Schloss-Schlüssel-Passung wird durch Wasserfluktuationen moderiert

Die Forscher haben in einer Computersimulation Bewegungen <br />und Kr&auml;fte zwischen Wassermolek&uuml;len (kleine, rot-wei&szlig;e &bdquo;Dipole&ldquo;) <br />, runden Liganden (gr&uuml;n) und einer wasserabsto&szlig;enden Hohlform<br />in einem Proteinmolek&uuml;l berechnet.

Die Forscher haben in einer Computersimulation Bewegungen
und Kräfte zwischen Wassermolekülen (kleine, rot-weiße „Dipole“)
, runden Liganden (grün) und einer wasserabstoßenden Hohlform
in einem Proteinmolekül berechnet.

HZB-Forscher zeigen, dass Wasser beim Transport von pharmazeutischen Wirkstoffen mehr ist als nur ein Lösungsmittel

Ohne Wasser gibt es kein Leben; fast alle biologischen Prozesse in den Zellen funktionieren nur in wässriger Lösung. Dabei wandern in der Regel kleine Moleküle (Liganden genannt) wie „Schlüssel“ in die passenden „Schlösser“, die sie in größeren Eiweißmolekülen finden und docken dort an. Dieser Vorgang löst dann Signale oder auch die Produktion von Stoffen aus. Doch welche Rolle das Vorhandensein von Wasser  dabei spielt, war bisher unklar. Ist es nur ein passives Transportmedium oder hat es noch andere Funktionen? Diese Frage haben Physiker um Prof. Dr. Joachim Dzubiella (HZB und HU Berlin) nun mit Hilfe von Computersimulationen für ein Modellsystem untersucht: Dabei zeigte sich, dass Wasser durch subtile Wechselwirkungen mit der Geometrie und den Oberflächen der Moleküle die Anbindungsgeschwindigkeit aktiv beeinflussen kann. Diese Erkenntnis ist neu und könnte für die gezielte Entwicklung von pharmazeutischen Wirkstoffen interessant sein.

Zusammen mit Kollegen der TU München, der UC San Diego und der University of Utah hat Dzubiella modelliert, wie ein kleines Ligandenmolekül in einer Art Tasche in einem Protein andockt und die Bewegungen und Kräfte bei diesem Prozess berechnet. Dabei gingen sie davon aus, dass die Oberfläche der Proteintasche hydrophob war.

„Natürlich dringen auch immer wieder einige Wassermoleküle in die Proteintasche ein“, berichtet Dzubiella. „Aber sie werden von der hydrophoben Oberfläche abgestoßen und erzeugen so eine kleine Welle, die wiederum die Ligandenmoleküle in der Nähe ergreift.“ Dabei bestimmt die Geometrie der Proteintasche, wie heftig diese Wasserfluktuationen ausfallen und ob sie die Ligandenmoleküle in der Nähe eher bremsen oder sogar beschleunigen.

„Wenn wir Wirkstoffe entwickeln wollen, die gezielt an bestimmten Molekülen in den Zellen andocken und dort Prozesse auslösen oder verhindern sollen, dann müssen wir den Prozess viel genauer als bisher verstehen“, erklärt Dzubiella. Mit dieser Arbeit, die nun in den angesehenen PNAS veröffentlicht wurde, liegt nun ein Ansatz vor.

arö


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.

  • Fokussierte Ionenstrahlen: Ein Werkzeug für viele Zwecke
    Science Highlight
    11.01.2024
    Fokussierte Ionenstrahlen: Ein Werkzeug für viele Zwecke
    Materialien auf der Nanoskala bearbeiten, Prototypen für die Mikroelektronik fertigen oder biologische Proben analysieren: Die Bandbreite für den Einsatz von fein fokussierten Ionenstrahlen ist riesig. Einen Überblick über die vielfältigen Möglichkeiten und eine Roadmap für die Zukunft haben Expert*innen aus der EU-Kooperation FIT4NANO nun gemeinsam erarbeitet. Der Beitrag ist in Applied Physics Review publiziert und richtet sich an Studierende, Anwender*innen aus Industrie und Wissenschaft sowie die Forschungspolitik.