Highlight: Erstmalige Beobachtung von Undulatorstrahlung mit Bahndrehimpuls

Die Abbildung demonstriert die exzellente Übereinstimmung zwischen Messung (links) und Rechnung mit dem HZB-Code WAVE (rechts).

Die Abbildung demonstriert die exzellente Übereinstimmung zwischen Messung (links) und Rechnung mit dem HZB-Code WAVE (rechts). © J. Bahrdt/HZB

Am Speicherring BESSY II ist es HZB-Wissenschaftlern erstmalig gelungen, 99 eV-Photonen mit Bahndrehimpuls in den höheren Harmonischen eines helikalen Undulators nachzuweisen. Im Sichtbaren werden diese sogenannten singulären Strahlen oder auch OAM-Photonen (Orbital Angular Momentum carrying photons) seit einigen Jahren durch geeignete Phasenmanipulation aus Laserlicht erzeugt. Der nun am HZB gelungene Nachweis ihrer Existenz in der off-axis-Strahlung helikaler Undulatoren - die theoretisch bereits vor fünf Jahren vorhergesagt wurde - weitet den Energiebereich von OAM-Photonen erheblich aus, da helikale Undulatoren an Elektronenbeschleunigern zur Erzeugung von Photonen bis in den Röntgenbereich eingesetzt werden.

Unter normalen Betriebsbedingungen der Synchrotronstrahlungsquelle BESSY II ist die Elektronenstrahlemittanz  - das Phasenraumvolumen der Elektronenpakete - zu groß, um die singuläre Phasenstruktur von OAM-Photonen beobachten zu können. Die Emittanz skaliert jedoch quadratisch mit der Energie: Bei ca. 900 MeV (die Energie einer alten PTB-Optik am BESSY II) beträgt sie deshalb nur noch ein Viertel. Ein Team um Dr. Johannes Bahrdt hat deshalb an einem Messtag im Januar 2013 die Maschine mit gespeichertem Strahl heruntergefahren und die Energie der gespeicherten Elektronen von 1,72 GeV auf 917 MeV abgesenkt. „Bei dieser Prozedur mussten wir alle Speicherringmagnete synchron mitfahren, um die Elektronenverluste zu minimieren“, sagt Johannes Bahrdt, „denn ein Nachinjizieren bei 917 MeV war nicht möglich.“

Bei dem Experiment betrug der Strahlstrom nur noch 1mA bei 8 Stunden Lebensdauer. Der Nachweis der singulären Strahlen erfolgte über ein Interferenzexperiment am Undulator UE56-2. Das erste Modul des Doppelundulators (helikale Polarisation) produzierte die OAM-Photonen, während der zweite Undulator (lineare Polarisation) als Referenzquelle diente. Die räumliche Verteilung der beiden transversal überlagerten Photonenstrahlen wurde mit einem Pinhole vor dem ersten optischen Element abgetastet. Die longitudinale Überlagerung und damit die Interferenz der beiden zunächst räumlich getrennten Lichtpakte erfolgte erst hinter dem Monochromator. Für die direkte Detektion der singulären Phasenverteilung wäre ein komplizierter Wavefront Sensor notwendig gewesen. Das Interferenzexperiment hingegen erzeugt eine aufgrund der Phasenverteilung charakteristische Intensitätsverteilung, die sich mit einer einfachen Photodiode nachweisen lässt. Das Nachweispattern ist eine Spirale. Der Drehsinn der Spirale spiegelt die Helizität der 1. Harmonischen des helikalen Unulators wieder; die Orientierung wird bestimmt durch den Phasenvorschub zwischen den beiden Undulatoren.

Nur in gemeinsamer Anstrengung von Mitarbeitern aus G-IA (P. Kuske, P. Schmid), NP-ABS (R. Müller), aus G-ISRR (K. Holldack) und G-AUND (J. Bahrdt, M. Scheer) war dieses „proof of principle“-Experiment möglich, auch deswegen, weil es außergewöhnliche Maschinenbedingungen erforderte. Photonen mit Bahndrehimpuls werden in Lichtquellen der nächsten Generation, also Energy Recovery Linacs, Ultimate Storage Rings oder Freie Elektronen Lasern, unter ganz normalen Betriebsbedingungen zur Verfügung stehen. Der zusätzliche Freiheitsgrad wird die Entwicklung neuartiger spektroskopischer Experimente, die an jetzigen Quellen noch nicht möglich sind, anstoßen.

Hier gelangen Sie zur Veröffentlichung in Physical Review Letters (DOI: 10.1103/PhysRevLett.111.034801)

hs


Das könnte Sie auch interessieren

  • Sebastian Keckert gewinnt Nachwuchspreis für Beschleunigerphysik
    Nachricht
    21.03.2024
    Sebastian Keckert gewinnt Nachwuchspreis für Beschleunigerphysik
    Dr. Sebastian Keckert wird mit dem Nachwuchspreis für Beschleunigerphysik der Deutschen Physikalischen Gesellschaft (DPG) ausgezeichnet. Der Preis ist mit 5000 Euro dotiert und wurde ihm am 21.03. während der Frühjahrstagung in Berlin feierlich verliehen. Er würdigt die herausragenden Leistungen des Physikers bei der Entwicklung neuer supraleitender Dünnschicht-Materialsysteme für Hohlraumresonatoren.

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.