Spektakulärer Einbau

Industrienahe Anlage zur Herstellung von Dünnschichtsolarmodulen aus Kupfer-Indium-Gallium-Sulfid/Selenid am PVcomB komplett

Der letzte, dem Kompetenzzentrum für Photovoltaik Berlin (PVcomB) noch fehlende Prozessofen musste mithilfe eines Krans durch ein Fenster im zweiten Stock gehievt werden. Dies gelang am Morgen des 9. Juli. Nun können in einem Prozess, der mit Industrieabläufen vergleichbar ist, CIGS-Dünnschichtsolarmodule in einer Größe von 30 mal 30 Quadratzentimeter hergestellt werden.

Frühaufsteher aus den benachbarten Büros mögen sich gewundert haben, als um 7 Uhr an diesem 9. Juli eines der großen Fenster im 2. Stock der Schwarzschildstr. 3 komplett ausgebaut wurde. Es hatte aber alles seine Richtigkeit. Der Inhaber dieses Fensterlabors, das Kompetenzzentrum für Photovoltaik Berlin (PVcomB), hat seine lang ersehnte inline-RTP-Anlage bekommen. Der  Prozessofen, geliefert von Smit Ovens BV aus den Niederlanden, komplettiert nun die Produktionslinie zur Herstellung von Dünnschichtsolarmodulen aus Kupfer-Indium-Gallium-Sulfid/Selenid (CIGS) auf 30 x 30 cm².

Damit können nun das schnelle Heizen und das gleichzeitige Aufbringen von Selen und Schwefel in einem einzigen vakuumfreien Schritt kombiniert werden. Die Prozesskette bei der Präparation der Solarmodule reduziert sich dadurch deutlich. Ein schnellerer und zugleich industrienaher  Vorgang wird möglich, der zugleich Module mit einer verbesserten Solareffizienz herstellen lässt.

Die Anlage ist mit einem Transportmaß von 4,80 m x 2,30m x 1,60 m zu groß für Aufzug und Treppenhaus. Nur durch das Fenster konnte sie in den letzten freien Laborplatz am PVcomB eingebracht werden.

Das Wetter für so eine Aktion war optimal und alles war perfekt vorbereitet. Sofort nach Ausbau des Fensterrahmens begannen die Spezialisten von Triton Transport mit dem Entladen der Maschine. 5,6 Tonnen mussten dabei bewegt werden. Der Koloss passte zentimetergenau durch die Öffnung und wurde während des Einschiebens zugleich eingedreht. Eine Arbeit, die mehrere Stunden dauerte und echte Maßarbeit ist.

Zirka 12 Stunden später ist die Anlage exakt positioniert, die Fenster sind wieder montiert und die Arbeiten konnten wie geplant erfolgreich abgeschlossen werden.

In den folgenden Tagen wurden die zahlreichen Medien angeschlossen und die Anlage in Betrieb genommen. Unter anderem ist eine unterbrechungsfreie Versorgung mit technischem Stickstoff notwendig, die die Maschine auch bei Ausfall der Stickstoff-Hausleitung kontrolliert abkühlen lässt.

Schon nach zirka drei Wochen soll die Anlage abgenommen sein. Dann hat das PVcomB exzellente Voraussetzungen für die Entwicklung von hocheffizienten CIGS -Solarmodulen. Die Anlage für die Silizium-Produktion ist bereits vor einem Jahr erfolgreich komplettiert worden.

IH / Björn Rau

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
  • Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Nachricht
    29.07.2024
    Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Der Plan klingt bestechend: Neuartige Elektrolyseure sollen aus ungereinigtem Meerwasser mit Strom aus Sonne oder Wind direkt Wasserstoff erzeugen. Doch bei näherer Betrachtung zeigt sich, dass solche DSE-Elektrolyseure (DSE = Direct Seawater Electrolyzers) noch Jahre anspruchsvoller Forschung erfordern. Dabei sind neuartige Elektrolyseure gar nicht nötig, um Meerwasser für die Produktion von Wasserstoff zu verwenden – eine Entsalzung reicht aus, um Meerwasser für konventionelle Elektrolyseure aufzubereiten. In einem Kommentar im Fachjournal Joule vergleichen internationale Expert*innen Kosten und Nutzen der unterschiedlichen Ansätze und kommen zu einer klaren Empfehlung.