Göttingen scientists use BESSY II to decode basic mechanism underlying biochemical reactions

Structure of the sugar molecule bound by the enzyme transketolase immediately prior to its being split

Structure of the sugar molecule bound by the enzyme transketolase immediately prior to its being split

Enzymes are life’s molecular catalysts and figure prominently in cellular metabolism. It has been speculated that in the course of a biochemical reaction enzymes physically bend their substrates to split them. Now for the first time ever, scientists at the Göttingen Center for Molecular Biosciences (GZMB) have successfully used BESSY II's MX beamline to unequivocally confirm this hypothesis. The results from this study have been published in the renowned scientific journal Nature Chemistry.

The Göttingen team around Prof. Dr. Kai Tittmann and Prof. Dr. Ralf Ficner started out by growing high order protein crystals of the human enzyme transketolase, which plays a central role in human metabolism during sugar processing. Natural sugar substrates were added to the protein crystals. Analysis of the enzyme’s crystalline structure was subsequently performed at electron storage ring BESSY II's MX beamline and in French Grenoble. The scientists were able to determine the structure of the sugar molecule bound by the enzyme immediately prior to its being split in half at an ultrahigh spatial resolution of 0.1 nanometers. “The snapshot we got of an enzyme at work, which really is unprecedented in terms of resolution, unequivocally reveals how the sugar substrate is being bent by the enzyme, similar to a vise clamping a work piece,” Prof. Tittmann explains.

In many cases, enzymes are drug targets. Which is why these new insights are important for the development of customized, highly specific active substances like those used in cancer therapy. “Even the human transketolase used in this study plays a key role in cancer cell metabolism,” says Prof. Tittmann.

Source: Göttingen University


You might also be interested in

  • Fertilisation under the X-ray beam
    Science Highlight
    19.03.2024
    Fertilisation under the X-ray beam
    After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF. 
  • The future of BESSY
    News
    07.03.2024
    The future of BESSY
    At the end of February 2024, a team at HZB published an article in Synchrotron Radiation News (SRN). They describe the next development goals for the light source as well as the BESSY II+ upgrade programme and the successor source BESSY III.

  • ERC Consolidator Grant for HZB researcher Robert Seidel
    News
    04.03.2024
    ERC Consolidator Grant for HZB researcher Robert Seidel
    Physicist Dr Robert Seidel has been awarded a Consolidator Grant by the European Research Council (ERC). Over the next five years, he will receive a total of two million euros for his research project WATER-X. Seidel will use state-of-the-art X-ray techniques at BESSY II to study nanoparticles in aqueous solution for the photocatalytic production of "green" hydrogen.