Charge Order competes with superconductivity

Stripe order of charge carriers in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+x</sub> [2]. The figure shows the structure with a period of approximately one nanometer (front) and the related diffraction pattern (back) obtained by a so-called Fourier transformation (Yazdani Lab, Princeton University).

Stripe order of charge carriers in Bi2Sr2CaCu2O8+x [2]. The figure shows the structure with a period of approximately one nanometer (front) and the related diffraction pattern (back) obtained by a so-called Fourier transformation (Yazdani Lab, Princeton University).

Today in Science Express: Charge carriers in cuprate high-Tc superconductors form nanostripes that suppress superconductivity, as shown by guest researchers from Princeton and Vancouver using synchrotron radiation at BESSY II

Superconductors are materials that can conduct electricity without any loss of energy. In order to exhibit this property, however, classical superconductors need to be cooled almost to absolute zero (minus 273 degrees centigrade). Even the so-called high-Tc superconductors still require very low temperatures of minus 200 degrees centigrade. While cooling down to these temperatures involves substantial effort, superconductors are already employed in many areas, e.g., for magnetic resonance tomography in medical applications. Despite extensive research, materials providing lossless conduction of electricity at room temperature are missing up to now.

High-Tc superconductors were discovered in 1986, the Nobel prize for the discovery came only one year later. The phenomenon of superconductivity at high temperatures is found in a class of materials called the cuprates, complex compounds of copper and oxygen, and additional ingredients. They are in the focus of research for almost 30 years now. Many aspects of the high-Tc cuprates, however, are still to be understood. This is due to the subtle details determining the properties of the charge carriers in these materials. Thus, a number of competing mechanisms preclude the superconducting state.

One of the competing states of the materials is a regular stripe pattern of charge carriers on the nanoscale. This kind of order freezes the charge carriers and prevents superconductivity. Already last year, guest researchers at BESSY II could elucidate the importance of this mechanism and its connection with superconductivity in a representative group of cuprates [1]. Lead by two research groups from Princeton and Vancouver, international teams of scientists have now identified the so-called charge order as a generic property of this class of materials.

For their research, they used the XUV diffractometer developed at HZB, which is operated at the UE46_PGM1 beamline at BESSY II. Employing soft x-ray synchrotron radiation, they succeeded in detecting the elusive phenomenon of charge order and measured the related nanostructures with high precision. This is an important step towards understanding the charge order and its connection to superconductivity in the cuprates. The research was conducted in close cooperation with scientists from the Department Quantum Phenomena in Novel Materials (previously from the Institute of Complex Magnetic Materials) at HZB. The results are now published in two articles in Science [2,3]. “Identifying and understanding the mechanisms competing with superconductivity raise the hope to control and eventually deactivate them. This may be one step towards superconductivity at room temperature”, explains Dr. Eugen Weschke, who supervised the experiment at BESSY II. 


[1] G. Ghiringelli et al., Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x, Science 337, 821 (2012).

[2] Eduardo H. da Silva Neto et al., Ubiquitous Interplay between Charge Ordering and High-Temperature Superconductivity in Cuprates, Science 2013. DOI: 10.1126/science.1243479

[3] R. Comin et al., Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ, Science (2013). DOI: 10.1126/science.1242996

arö


You might also be interested in

  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells.