Eine neue Klasse von Halbleitern für effiziente nano-optische Bauteile

Die Probe besteht aus einer Lage Wolframselenid (orange), die auf einer Schicht aus Molybdänsulfid (blau) aufgebracht ist. Untersuchungen  mit dem SPEEM-Mikroskop an BESSY II zeigen, dass durch Ladungstransfer zwischen den beiden Halbleiterschichten ein elektrisches Potential von bis zu 400meV besteht.

Die Probe besteht aus einer Lage Wolframselenid (orange), die auf einer Schicht aus Molybdänsulfid (blau) aufgebracht ist. Untersuchungen mit dem SPEEM-Mikroskop an BESSY II zeigen, dass durch Ladungstransfer zwischen den beiden Halbleiterschichten ein elektrisches Potential von bis zu 400meV besteht. © F. Kronast/HZB

Wie die Infoplattform nanotechweb.org berichtet, könnten sich dünne Schichten aus bestimmten Chalkogeniden als nanooptische Bauelemente eignen, zum Beispiel als LEDs, Laser oder Solarzellen.  Einatomare Lagen aus solchen Verbindungen verhalten sich wie zweidimensionale Halbleiter. Nun haben Wissenschaftler der University of California und des Lawrence Berkeley National Lab eine so genannte Heteroverbindung aus zwei unterschiedlichen Chalkogeniden hergestellt und ihre elektronischen und optischen Eigenschaften auch am HZB an BESSY II untersucht.

Die Probe bestand aus einer einatomaren Lage aus Wolframselenid, die auf Molybdänsulfid aufgebracht war. „An BESSY II haben wir mit lokaler Röntgen-Photoemissionsspektroskopie am SPEEM-Mikroskop gesehen,  dass beide Schichten elektronisch miteinander koppeln und ein Ladungstransfer stattfindet“, sagt Dr. Florian Kronast vom HZB. Damit sind solche Chalkogenid-Heteroverbindungen interessante Kandidaten für neue Bauelemente.

Zum Artikel in nanotechweb.org:
Die Originalarbeit wurde in den PNAS publiziert: PNAS doi: 10.1073/pnas.1405435111

arö

Das könnte Sie auch interessieren

  • Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Nachricht
    12.08.2022
    Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Alexander Gray von der Temple University in Philadelphia, USA, arbeitet gemeinsam mit dem HZB-Physiker Florian Kronast an der Erforschung neuartiger 2D-Quantenmaterialien an BESSY II. Mit dem Stipendium der Alexander von Humboldt-Stiftung kann er diese Zusammenarbeit nun vertiefen. Bei BESSY II will er tiefenaufgelöste röntgenmikroskopische und -spektroskopische Methoden weiterentwickeln, um 2D-Quantenmaterialien und Bauelemente für neue Informationstechnologien zu untersuchen. 
  • Grüner Wasserstoff: Nanostrukturiertes Nickelsilizid glänzt als Katalysator
    Science Highlight
    11.08.2022
    Grüner Wasserstoff: Nanostrukturiertes Nickelsilizid glänzt als Katalysator
    Elektrische Energie aus Wind oder Sonne lässt sich als chemische Energie in Wasserstoff speichern, einem hervorragenden Kraftstoff und Energieträger. Voraussetzung dafür ist allerdings die effiziente Elektrolyse von Wasser mit kostengünstigen Katalysatoren. Nanostrukturiertes Nickelsilizid kann die Effizienz der Sauerstoffentwicklungsreaktion an der Anode deutlich steigern. Dies zeigte nun ein Team aus dem HZB, der Technischen Universität Berlin und der Freien Universität Berlin im Rahmen der Forschungsplattform CatLab unter anderem auch mit Messungen an BESSY II.
  • RBB Abendschau zu Besuch bei CatLab
    Nachricht
    01.08.2022
    RBB Abendschau zu Besuch bei CatLab
    CatLab bekam Besuch von der rbb Abendschau.
    Unter dem Titel "Der Weg weg vom Erdgas" wurde der Beitrag am Sonntag, 31. Juli in de rbb Abendschau ausgestrahlt und wird für 7 Tage in die rbb-Mediathek verfügbar.