Themen: Forschungsreaktor (90) Materialforschung (67) Spintronik (93) Quantenmaterialien (28)

Nachricht    18.12.2014

Hochfeldmagnet sucht Neutronenleiter

Aus dem Technikum

Mit dem "Boom-Truck" auf Reisen

Berliner Mutterwitz

"Da vorne bitte rechts abbiegen!"

Macht hoch die Tür, die Tor macht weit!

Endhaltestelle Neutronenleiterhalle

Am Freitag, den 12. Dezember 2014 fand der Umzug des Hochfeldmagneten an seinen endgültigen Aufstellungsort in der Neutronenleiterhalle statt. Eine Spezialfirma für Maschinentransporte bugsierte den über 25 Tonnen schweren Stahlkoloss aus dem HFM-Technikum heraus und setzte ihn in Bewegung.

Auf Schwerlastrollen ging es dann „zweimal um die Ecke“ zur Neutronenleiterhalle II. Dort wurde der Magnet zentimeterweise über die Schwelle gezogen, wobei nur eine Fingerbreite Platz nach oben blieb. Ein Hubportal auf Schienen ließ dann den angehängten Magneten an seinen finalen Ort gleiten. Diese besondere Konstruktion war notwendig, da der Hallenkran nicht die erforderliche Belastbarkeit hat. Am darauffolgenden Montag, den 15.12. 14 wurde der Magnet dann auf 1 mm genau in seiner Endposition in Richtung des Neutronenleiters ausgerichtet.

Anschluss in Arbeit

In den nächsten Wochen wird der Magnet wieder an seine Versorgungsleitungen für Wasser, Helium und elektrischen Strom angeschlossen werden. Eine besondere konstruktive Herausforderung ist dabei, dass der Magnet um insgesamt 30° drehbar gelagert ist und alle Versorgungsleitungen diesen Schwenk mitmachen müssen. Dazu waren für alle Medien geeignete bewegliche Lagerungssysteme entwickelt worden.

Der Plan: Im Frühjahr 2015 erste Experimente möglich

„Wir sind froh, dass wir diesen wichtigen Schritt noch in 2014 geschafft haben“ ist Projektingenieur Matthias Hoffmann erleichtert. Erst im Januar diesen Jahres war die supraleitende Magnetspule im Kryostat aus Italien angekommen. Endmontage und Tests fanden dann in einem vergleichsweise kurzen Zeitraum von wenigen Monaten statt. Dennoch ist nun kaum Zeit übrig, um sich einmal eine längere Atempause zu gönnen. Der Projektleiter Peter Smeibidl rechnet mit großem Zuspruch durch die wissenschaftliche Community: „Die zukünftigen Nutzer können es kaum erwarten, nachdem wir signalisiert haben, dass wir Ende März betriebsbereit sein wollen“ .

Hartmut Ehmler


           



Das könnte Sie auch interessieren
  • <p>Eine ferrimagnetische Probe aus einer Eisen-Gadolinium Legierung wurde am Femtoslicing-Experiment von BESSY II analysiert.</p>SCIENCE HIGHLIGHT      10.05.2019

    Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?

    Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden. Magnetisierung wiederum ist fundamental mit dem Drehimpuls der Elektronen im Material verbunden. Ein Forscherteam des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnte nun an BESSY II den Drehimpulstransfer in einer ferrimagnetischen Eisen-Gadolinium-Legierung im Detail verfolgen. Dabei gelang es ihnen, am Femtoslicing-Experiment bei BESSY II die ultraschnelle optische Entmagnetisierung zu vermessen und deren grundlegende Prozesse und Geschwindigkeitsgrenzen zu verstehen. Die Forschungsergebnisse wurden in der Zeitschrift „Physical Review Letters“ veröffentlicht. [...]


  • <p>Die Tomographie einer neuwertigen Lithium-Elektrode.</p>SCIENCE HIGHLIGHT      06.05.2019

    3D-Tomographien zeigen, wie Lithium-Akkus altern

    Lithium-Akkus verlieren mit der Zeit an Kapazität. Bei jeder neuen Aufladung können sich Mikrostrukturen an den Elektroden bilden, die die Kapazität weiter reduzieren. Nun hat ein HZB-Team zusammen mit Batterieforschern aus dem Forschungszentrum Jülich, der Universität Münster und Partnern aus Forschungseinrichtungen in China den Prozess der Degradation von Lithium-Elektroden erstmals im Detail dokumentiert. Dies gelang ihnen mithilfe eines 3D-Tomographieverfahrens mit Synchrotronstrahlung an BESSY II (HZB) sowie am Helmholtz-Zentrum Geesthacht (HZG). Ihre Ergebnisse sind in der Fachzeitschrift Materials Today veröffentlicht (Open Access). [...]


  • <p>Zinnselenid besitzt eine schichtartige orthorhombische Kristallstruktur (links). Oberhalb von 500 Grad Celsius (rechts) &auml;ndert sich die Anordnung der Schichten.</p>SCIENCE HIGHLIGHT      24.04.2019

    Thermoelektrika: Neue Einblicke ins Rekordmaterial Zinnselenid

    Bei den Thermoelektrika könnte Zinnselenid die bisherigen Rekordhalter aus Wismuttellurid an Effizienz deutlich übertreffen. Allerdings ist der thermoelektrische Effekt in Zinnselenid nur bei Temperaturen oberhalb von 500 Grad so enorm. Nun zeigen Messungen an den Synchrotronquellen BESSY II und PETRA III, dass sich Zinnselenid auch bei Raumtemperatur als Thermoelektrikum nutzen lässt – sofern man hohen Druck anlegt. [...]




Newsletter