Maximum efficiency, minimum materials and complexity

The a-Si:H is deposited on a AZO-film that acts as a transparent front contact. A ITO-layer serves as rear contact. The organic sub-cell possesses a front contact made of a conductive polymer material (PEDOT) and a metallic rear contact.

The a-Si:H is deposited on a AZO-film that acts as a transparent front contact. A ITO-layer serves as rear contact. The organic sub-cell possesses a front contact made of a conductive polymer material (PEDOT) and a metallic rear contact. © Uni Potsdam

Silicon-based thin-film solar cell with a supplementary organic layer can utilise infrared light as well

The cell consists of many active layers, which taken together are less than one micron thick. The new hybrid solar cell is constructed of two extremely thin layers of amorphous silicon as well as an organic layer. Despite the low volume of materials employed, the hybrid cell attains recording-breaking efficiency of 11.7%.
The organic layer is made of fullerenes, also known as “soccer ball molecules”, mixed with semiconducting polymers. It is able to convert infrared light that cannot be utilised by the silicon layers into electrical energy.

The complementary compound of organic and inorganic materials in a stacked cell offers a promising option for future solar cells. The cell was jointly developed through the BMBF “Leading-edge Research and Innovation in the New German Länder” programme by teams at the University of Potsdam and HZB who have published their work in the renowned technical journal Advanced Materials.

The fundamental component of the cell is a very thin layer of amorphous silicon interspersed with hydrogen (hydrogenated amorphous silicon / a-Si:H). These kinds of simple thin-film solar cells do not attain high efficiencies, as they can only use photons in the blue and green regions of the spectrum.

Steffen Roland, a doctoral student in Prof. Dieter Neher’s group at the University of Potsdam, and Sebastian Neubert, a doctoral student under Prof. Rutger Schlatmann in PVcomB at HZB, added first another a-Si:H layer to a tandem cell and then deposited an additional organic layer that enables infrared light as well to be converted into electrical energy. In this manner, they were able to increase the efficiency of the triple-junction cell to over 11%. At the same time, the structure of this solar cell is able to withstand the effects of aging better. This success impressively demonstrates how the close cooperation of doctoral students from different fields of study (organic semiconductors and inorganic semiconductors) leads to new device structures with improved properties.

“The cell can be fabricated easily with established thin-film technology common in the industry, and is also suited to production in large sheets”, explains Schlatmann. Neher adds: “The high absorption coefficients of a-SI:H layers and the properties of the organic layer make possible an active stack no thicker than one micron - that is maximum efficiency with minimum materials!”


Article first published online 7 January 2015 in Advanced Materials: Hybrid Organic/Inorganic Thin-Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency
DOI: 10.1002/adma.201404698

arö


You might also be interested in

  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.