Themen: Forschungsreaktor (90) Materialforschung (67)

Nachricht    19.02.2015

Nach Unterbrechung: Neutronenquelle BER II nimmt Experimentierbetrieb wieder auf

Der Hochfeldmagnet (HFM) hat in einem ersten Test 26 Tesla erreicht und damit die Erwartungen übertroffen. Das HFM-Team freut sich über den verdienten Erfolg.


Copyright: HZB/Ingo Kniest

Wartungsarbeiten erfolgreich abgeschlossen - Hochfeldmagnet hat in erstem Test erfolgreich 26 Tesla erreicht. Neue Experimente für Wissenschaft möglich.

Berlin, Februar 2015: Nach Abschluss der über ein Jahr dauernden Reparatur- und Ertüchtigungsarbeiten steht die Neutronenquelle BER II in Kürze ihrer internationalen Nutzerschaft wieder zur Verfügung. Am Mittwoch, den 18. Februar ist die Anlage hochgefahren worden. Sie hat jetzt ihre Nennleistung von 9,5 Megawatt erreicht. Die Wissenschaftlerinnen und Wissenschaftler des HZB bereiten derweil die Messinstrumente vor, so dass nach einer kurzen Einfahrzeit der Experimentierbetrieb wieder startet.

Während der Betriebsunterbrechung wurde eine Schweißnaht beseitigt, die als potentielle Schwachstelle bekannt war. Es handelte sich um eine Dichtungsschweißnaht, die sich im Bereich der Trennwand zwischen den beiden Reaktorbeckenhälften befand. In dieser Schweißnaht wurden 2010 Schadstellen entdeckt, die seither sorgfältig beobachtet wurden. Es handelte sich um kein sicherheitsrelevantes Bauteil, trotzdem wurde 2013 beschlossen, die Schweißnaht ersatzlos zu entfernen.

Zeitgleich wurde der neue Hochfeldmagnet endmontiert und an seiner endgültigen Betriebsposition in der Neutronenleiterhalle aufgebaut. Lesen Sie dazu hier: Im Dezember 2014 hat er erstmals ein Magnetfeld von 26 Tesla produziert und diesen Wert auch stabil über einen längeren Zeitraum gehalten. Damit hat er den Zielwert von 25 Tesla sogar noch übertroffen.

Mit der jetzt erfolgten Wiederinbetriebnahme des BER II nach der Betriebsunterbrechung wurde ein wichtiges Ziel erreicht: den Teilnehmern der internationalen Neutronenschule können in gewohnt hoher Qualität reale Experimente mit Neutronen angeboten werden. Die 12-tägige Weiterbildung für junge Wissenschaftlerinnen und Wissenschaftler findet vom 26. Februar bis zum 6. März zum 35. Mal in Berlin statt.

Die Entwicklung und der erfolgreiche Aufbau des für Neutronenexperimente weltweit einzigartigen Hochfeldmagneten haben insgesamt nur 7,5 Jahre gedauert. Alle vergleichbaren Projekte weltweit für den Bau von Hybridmagneten in den vergangenen 25 Jahren dauerten zwischen 9.5 und 16 Jahren. Die zügige Projektdauer kann damit als Weltspitze angesehen werden. Zudem blieb das Projekt im vorgesehenen inflationsbereinigten Kostenrahmen von knapp 21 Mio. Euro.

Mit dem Hochfeldmagneten wird in der letzten Förderperiode des BER II erneut ein Spitzeninstrument an die Neutronenquelle angeschlossen. Mit ihm sind völlig neuartige Experimente möglich, die den Zugang zu neuer Wissenschaft eröffnen, zum Beispiel bei der Erforschung von Supraleitung und magnetischen Phasenübergängen in Feststoffen.

IH


           



Das könnte Sie auch interessieren
  • <p>Eine ferrimagnetische Probe aus einer Eisen-Gadolinium Legierung wurde am Femtoslicing-Experiment von BESSY II analysiert.</p>SCIENCE HIGHLIGHT      10.05.2019

    Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?

    Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden. Magnetisierung wiederum ist fundamental mit dem Drehimpuls der Elektronen im Material verbunden. Ein Forscherteam des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnte nun an BESSY II den Drehimpulstransfer in einer ferrimagnetischen Eisen-Gadolinium-Legierung im Detail verfolgen. Dabei gelang es ihnen, am Femtoslicing-Experiment bei BESSY II die ultraschnelle optische Entmagnetisierung zu vermessen und deren grundlegende Prozesse und Geschwindigkeitsgrenzen zu verstehen. Die Forschungsergebnisse wurden in der Zeitschrift „Physical Review Letters“ veröffentlicht. [...]


  • <p>Die Tomographie einer neuwertigen Lithium-Elektrode.</p>SCIENCE HIGHLIGHT      06.05.2019

    3D-Tomographien zeigen, wie Lithium-Akkus altern

    Lithium-Akkus verlieren mit der Zeit an Kapazität. Bei jeder neuen Aufladung können sich Mikrostrukturen an den Elektroden bilden, die die Kapazität weiter reduzieren. Nun hat ein HZB-Team zusammen mit Batterieforschern aus dem Forschungszentrum Jülich, der Universität Münster und Partnern aus Forschungseinrichtungen in China den Prozess der Degradation von Lithium-Elektroden erstmals im Detail dokumentiert. Dies gelang ihnen mithilfe eines 3D-Tomographieverfahrens mit Synchrotronstrahlung an BESSY II (HZB) sowie am Helmholtz-Zentrum Geesthacht (HZG). Ihre Ergebnisse sind in der Fachzeitschrift Materials Today veröffentlicht (Open Access). [...]


  • <p>Zinnselenid besitzt eine schichtartige orthorhombische Kristallstruktur (links). Oberhalb von 500 Grad Celsius (rechts) &auml;ndert sich die Anordnung der Schichten.</p>SCIENCE HIGHLIGHT      24.04.2019

    Thermoelektrika: Neue Einblicke ins Rekordmaterial Zinnselenid

    Bei den Thermoelektrika könnte Zinnselenid die bisherigen Rekordhalter aus Wismuttellurid an Effizienz deutlich übertreffen. Allerdings ist der thermoelektrische Effekt in Zinnselenid nur bei Temperaturen oberhalb von 500 Grad so enorm. Nun zeigen Messungen an den Synchrotronquellen BESSY II und PETRA III, dass sich Zinnselenid auch bei Raumtemperatur als Thermoelektrikum nutzen lässt – sofern man hohen Druck anlegt. [...]




Newsletter