Themen: Energie (312) Solarenergie (246) Kooperationen (139) Solare Brennstoffe (77) BESSY II (269) HZB-Eigenforschung (99)

Nachricht    02.07.2015

Grüne Lösungen mit Diamant-Materialien

Nano-Diamant-Materialien könnten helfen, Kohlendioxid zu wertvollen Brennstoffen weiterzuverarbeiten. Sonnenlicht soll sie als Katalysatoren aktivieren.
Copyright: T.Petit/H.Cords/HZB

Mit 3,9 Millionen Euro fördert das Europäische Forschungsprogramm Horizont 2020 ein internationales Projekt, das die Eignung von (Nano-)Diamant-Materialien als Katalysatoren untersucht: mit Hilfe von Sonnenlicht könnten solche Materialien Kohlendioxid in Brennstoffe umwandeln und damit Solarenergie chemisch speichern.

Synthetische Diamant-Materialien besitzen besondere Eigenschaften: Unter Lichtbestrahlung können sie chemische Reaktionen beschleunigen, also als Katalysatoren agieren. Eine Forschungskooperation aus Frankreich, England, Schweden und Deutschland, darunter auch Prof. Dr. Emad Aziz aus dem Helmholtz-Zentrum Berlin, will nun synthetische Diamant-Materialien so modifizieren, dass sie mit Hilfe von sichtbarem Licht zu effizienten Katalysatoren werden und Kohlendioxid in Kohlenwasserstoffe oder Brennstoffe umwandeln.

Erfolgreich in der Sektion Future Emerging Technologies

Das Forschungsvorhaben wird unter dem Akronym DIACAT geführt, für „Diamond materials for photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light“. Der Antrag setzte sich im strengen Auswahlverfahren in der Sektion “Future Emerging Technologies” durch und wird mit insgesamt 3,9 Millionen Euro gefördert, davon fließen 526,000 Euro an das HZB. Das Projekt wird durch Prof. Dr. Anke Krüger, Julius-Maximilians-Universität Würzburg, koordiniert und bindet Teams aus CEA (Frankreich), University of Oxford (UK), Uppsala University (Schweden), Fraunhofer-Institut für Angewandte Festkörperphysik, Ionic Liquid Technologies GmbH, und vom HZB ein. 

Experimentelle Möglichkeiten an BESSY II

Emad Aziz hat 2011 einen Starting Grant des European Research Council erhalten und leitet ein großes Team am HZB. An der Synchrotronquelle BESSY II des HZB hat er ein einzigartiges Instrument entwickelt, um Flüssigkeiten und Materialien in Lösung zu untersuchen. Gleichzeitig leitet Aziz auch das Joint Lab an der Freien Universität Berlin, wo ihm Hochleitungslaser mit ultrakurzen Pulsen zur Verfügung stehen. „Wir haben direkten Zugriff auf eine Vielzahl experimenteller Möglichkeiten, um die physikalischen und chemischen Eigenschaften von Diamant-Materialien zu untersuchen“, sagt er. Postdoktorand Dr. Tristan Petit aus seinem Team bringt Expertise mit Nanodiamanten ein: “Ich habe in den letzten Jahren sehr viel mit Nanodiamanten in Lösung gearbeitet. Nun wollen wir diese Arbeiten auf Grenzflächen und nanostrukturierte Diamant-Oberflächen ausdehnen, um zu sehen, wie wir diese Materialien modifizieren können, damit sie unter Lichtbestrahlung CO2 in die gewünschten Kohlenwasserstoffverbindungen umwandeln”, erklärt er.

Solarenergie chemisch speichern

Das Forschungsprojekt soll nicht nur das experimentelle und theoretische Verständnis von Diamant-Materialien als Katalysatoren erweitern, sondern auch praktisch demonstrieren, dass sie mit Licht Kohlendioxid in Brennstoffe umwandeln. Das Projekt könnte damit eine neue, grüne Technologie anstoßen, mit der sich die Energie des Sonnenlichts chemisch speichern ließe.

arö


           



Das könnte Sie auch interessieren
  • <p>Die Idee: Im Sommer wird Schmelzwasser in einem Modul aus Solarzellen und Katalysatoren in Wasserstoff (H<sub>2</sub>) und Sauerstoff gespalten. Das H<sub>2</sub> wird gespeichert.</p>NACHRICHT      22.05.2019

    Energieversorgung in der Antarktis: Ist solarer Wasserstoff eine Alternative zu Erdöl?

    Volkswagenstiftung fördert Machbarkeitsstudie durch HZB-Experten für künstliche Photosynthese

    Auch am Südpol scheint die Sonne – im Sommer sogar fast rund um die Uhr. Forschungsstationen könnten im Sommer mit Sonnenlicht „solaren Wasserstoff“ produzieren und so auf Erdöl weitgehend verzichten. Wasserstoff besitzt eine hohe Energiedichte, lässt sich gut speichern und bei Bedarf als Brennstoff nutzen, ohne die Umwelt zu belasten. Matthias May, HZB, und Kira Rehfeld, Uni Heidelberg, wollen nun überprüfen, ob  die solare Brennstofferzeugung in der Antarktis realisierbar ist. Das Projekt wird von der Volkswagenstiftung gefördert. [...]


  • <p>Bassi untersucht Materialsysteme, die als Photoelektrokatalysatoren die Wasserspaltung mit Licht erm&ouml;glichen.</p>NACHRICHT      20.05.2019

    Posterpreis für HZB Postdoc Prince Saurabh Bassi

    Auf dem "International Bunsen-Discussion-Meeting on Fundamentals and Applications of (Photo) Electrolysis for Efficient Energy Storage” erhielt Dr. Prince Saurabh Bassi den Posterpreis. Bassi ist Postdoc bei Prof. Sebastian Fiechter am HZB-Institut für Solare Brennstoffe.

    [...]


  • <p>Im Innovationslabor HySPRINT arbeiten HZB-Teams an neuen Verfahren zur Herstellung von Perowskit-Solarzellen.</p>NACHRICHT      16.05.2019

    Europäische Perowskit-Initiative EPKI gestartet

    Perowskit-basierte Solarzellen haben in den letzten zehn Jahren enorme Fortschritte gemacht und erreichen im Labormaßstab bereits Wirkungsgrade von 24,2% (Anfang 2019) in Single-Junction-Architekturen und bis zu 28% im Tandem mit kristallinem Silizium. Dies macht sie zu der Solartechnologie, die sich bis heute am schnellsten entwickelt. Das Helmholtz-Zentrum Berlin hat in den letzten Jahren mit dem HySPRINT Projekt und der Rekrutierung talentierter Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler eine erhebliche Forschungskapazität im Bereich Perowskit-Materialien aufgebaut und beteiligt sich an der nun gestarteten Europäischen Perowskit-Initiative EPKI. [...]




Newsletter