Gerd Schneider erhält Professur für Röntgenmikroskopie an der Humboldt-Universität zu Berlin

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB.

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB. © WISTA MANAGEMENT GmbH

Gerd Schneider (HZB) hat den Ruf auf eine W2-S-Professur "Röntgenmikroskopie" am Institut für Physik der Humboldt-Universität zu Berlin am 29. April 2015 angenommen. Die Professur ist verbunden mit der Leitung der Arbeitsgruppe „Röntgenmikroskopie“ am Helmholtz-Zentrum Berlin für Materialien und Energie. Mit seinem Team entwickelt der international anerkannte Experte neue Methoden und Anwendungen für die Röntgenmikroskopie, die entscheidende Beiträge für viele wissenschaftlichen Disziplinen – von der Material- und Energieforschung bis hin zu den Lebenswissenschaften – liefert.

Die Arbeitsgruppe um Gerd Schneider betreibt eines der modernsten Röntgenmikroskope der Welt, das in Kombination mit dem „weichen“ Röntgenlicht  von BESSY II räumliche Auflösungen bis zu zehn Nanometern erlaubt.

Röntgenmikroskopie ist ein unerlässliches Werkzeug für die Untersuchung von Materialien

Die Röntgenmikroskopie hat gegenüber der Licht- und Elektronenmikroskopie entscheidende Vorteile: Sie ermöglicht beispielsweise, dass Forscher Strukturen von Objekten dreidimensional betrachten können, – und das bei einer sehr hohen Auflösung von 10 Nanometern. „Während Forscher im Elektronenmikroskop nur sehr dünne Probe mit maximal etwa 0,1 µm Dicke betrachten können, erlaubt die Röntgenmikroskopie beispielsweise ganze Zellen mit Dicken von 10 µm zu untersuchen. „Gegenüber der modernen Super-Resolution Lichtmikroskopie, die Farbstoffmoleküle in Zellen zur Überwindung der Auflösungsgrenze nach Abbé benötigt, liefert die Röntgenmikroskopie einen direkten Blick auf die zellulären Strukturen ohne jegliche Färbung“, erläutert Prof. Dr. Gerd Schneider. Licht- und Röntgenmikroskopie erlauben ganze Zellen zu studieren, somit können durch korrelative Untersuchungen an einzelnen Zellen mittels Lichtmikroskopie bestimmte Proteine lokalisiert werden, deren Verteilung mittels Röntgenmikroskopie in einen strukturellen zellulären Kontext gebracht werden kann.

Da jedes chemische Element spezifische Röntgenabsorptionskanten besitzt, erlaubt die Röntgenmikroskopie eine elementspezifische Bestimmung der Bestandteile einer Probe. Auch chemische Bindungszustände lassen sich durch die Nahkantenspektroskopie gut abbilden. Weil die Elemente eine charakteristische Fluoreszenz unter Röntgenlicht besitzen, kann man zudem die räumliche Verteilung extrem niedriger Konzentrationen von Elementen in einer Probe gut ermitteln. Auf diese Weise liefert die Röntgenmikrokopie ein umfassendes Bild von Proben.  

Hochpräzise Rötgenoptiken entwickeln

Um eine möglichst hohe Auflösung in der Röntgenmikroskopie zu erzielen, werden hochpräzise Optiken benötigt, die den Röntgenstrahl fokussieren. Die Arbeitsgruppe um Gerd Schneider hat neben der Entwicklung von Röntgenmikroskopen maßgeblich zur Weiterentwicklung dieser Optiken, den Fresnel-Zonenplatten, beigetragen. Mit solchen 3D-Röntgenoptiken und modernen Synchrotronquellen wie BESSY II können Beiträge zu vielen wissenschaftliche Fragestellungen von den Grundlagen der Strukturbiologie bis hin zur Forschung an modernen Energiespeichern geleistet werden.

sz


Das könnte Sie auch interessieren

  • Best Innovator Award 2023 für Artem Musiienko
    Nachricht
    22.03.2024
    Best Innovator Award 2023 für Artem Musiienko
    Dr. Artem Musiienko ist für seine bahnbrechende neue Methode zur Charakterisierung von Halbleitern mit einem besonderen Preis ausgezeichnet worden. Auf der Jahreskonferenz der Marie Curie Alumni Association (MCAA) in Mailand, Italien, wurde ihm der MCAA Award für die beste Innovation verliehen. Seit 2023 forscht Musiienko mit einem Postdoc-Stipendium der Marie-Sklodowska-Curie-Actions in der Abteilung von Antonio Abate, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP) am HZB.
  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.