Gerd Schneider erhält Professur für Röntgenmikroskopie an der Humboldt-Universität zu Berlin

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB.

Prof. Dr. Gerd Schneider hält die Professur für Röntgenmikroskopie an der HU Berlin inne und leitet die gleichnamige Arbeitsgruppe am HZB. © WISTA MANAGEMENT GmbH

Gerd Schneider (HZB) hat den Ruf auf eine W2-S-Professur "Röntgenmikroskopie" am Institut für Physik der Humboldt-Universität zu Berlin am 29. April 2015 angenommen. Die Professur ist verbunden mit der Leitung der Arbeitsgruppe „Röntgenmikroskopie“ am Helmholtz-Zentrum Berlin für Materialien und Energie. Mit seinem Team entwickelt der international anerkannte Experte neue Methoden und Anwendungen für die Röntgenmikroskopie, die entscheidende Beiträge für viele wissenschaftlichen Disziplinen – von der Material- und Energieforschung bis hin zu den Lebenswissenschaften – liefert.

Die Arbeitsgruppe um Gerd Schneider betreibt eines der modernsten Röntgenmikroskope der Welt, das in Kombination mit dem „weichen“ Röntgenlicht  von BESSY II räumliche Auflösungen bis zu zehn Nanometern erlaubt.

Röntgenmikroskopie ist ein unerlässliches Werkzeug für die Untersuchung von Materialien

Die Röntgenmikroskopie hat gegenüber der Licht- und Elektronenmikroskopie entscheidende Vorteile: Sie ermöglicht beispielsweise, dass Forscher Strukturen von Objekten dreidimensional betrachten können, – und das bei einer sehr hohen Auflösung von 10 Nanometern. „Während Forscher im Elektronenmikroskop nur sehr dünne Probe mit maximal etwa 0,1 µm Dicke betrachten können, erlaubt die Röntgenmikroskopie beispielsweise ganze Zellen mit Dicken von 10 µm zu untersuchen. „Gegenüber der modernen Super-Resolution Lichtmikroskopie, die Farbstoffmoleküle in Zellen zur Überwindung der Auflösungsgrenze nach Abbé benötigt, liefert die Röntgenmikroskopie einen direkten Blick auf die zellulären Strukturen ohne jegliche Färbung“, erläutert Prof. Dr. Gerd Schneider. Licht- und Röntgenmikroskopie erlauben ganze Zellen zu studieren, somit können durch korrelative Untersuchungen an einzelnen Zellen mittels Lichtmikroskopie bestimmte Proteine lokalisiert werden, deren Verteilung mittels Röntgenmikroskopie in einen strukturellen zellulären Kontext gebracht werden kann.

Da jedes chemische Element spezifische Röntgenabsorptionskanten besitzt, erlaubt die Röntgenmikroskopie eine elementspezifische Bestimmung der Bestandteile einer Probe. Auch chemische Bindungszustände lassen sich durch die Nahkantenspektroskopie gut abbilden. Weil die Elemente eine charakteristische Fluoreszenz unter Röntgenlicht besitzen, kann man zudem die räumliche Verteilung extrem niedriger Konzentrationen von Elementen in einer Probe gut ermitteln. Auf diese Weise liefert die Röntgenmikrokopie ein umfassendes Bild von Proben.  

Hochpräzise Rötgenoptiken entwickeln

Um eine möglichst hohe Auflösung in der Röntgenmikroskopie zu erzielen, werden hochpräzise Optiken benötigt, die den Röntgenstrahl fokussieren. Die Arbeitsgruppe um Gerd Schneider hat neben der Entwicklung von Röntgenmikroskopen maßgeblich zur Weiterentwicklung dieser Optiken, den Fresnel-Zonenplatten, beigetragen. Mit solchen 3D-Röntgenoptiken und modernen Synchrotronquellen wie BESSY II können Beiträge zu vielen wissenschaftliche Fragestellungen von den Grundlagen der Strukturbiologie bis hin zur Forschung an modernen Energiespeichern geleistet werden.

sz

Das könnte Sie auch interessieren

  • Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Science Highlight
    28.11.2022
    Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit. Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.
  • Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Science Highlight
    22.11.2022
    Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.
  • BESSY II: Einfluss von Protonen auf Wassermoleküle
    Science Highlight
    10.11.2022
    BESSY II: Einfluss von Protonen auf Wassermoleküle
    Wie Wasserstoff-Ionen oder Protonen mit ihrer wässrigen Umgebung wechselwirken, hat große Praxisrelevanz, ob in der Technologie von Brennstoffzellen oder in den Lebenswissenschaften. Nun hat ein großes internationales Konsortium an der Röntgenquelle BESSY II diese Frage experimentell im Detail untersucht und neue Effekte entdeckt. So verändert die Anwesenheit eines Protons die elektronische Struktur der drei innersten Wassermoleküle, wirkt sich aber außerdem auch noch darüber hinaus über ein langreichweitiges Feld auf eine Hydrathülle aus fünf weiteren Wassermolekülen aus.