Ladungstransport in hybriden Silizium-basierten Solarzellen

Sara J&auml;ckle hat gezeigt, dass sich an der Grenzfl&auml;che zwischen organischem Kontakt und n-dotiertem Silizium ein pn-&Uuml;bergang ausbildet. </p>
<p>

Sara Jäckle hat gezeigt, dass sich an der Grenzfläche zwischen organischem Kontakt und n-dotiertem Silizium ein pn-Übergang ausbildet.

© Björn Hoffmann

Sorgf&auml;ltige Messreihen an Silizium-Wafern mit unterschiedlich starker n-Dotierung haben die Entdeckung erm&ouml;glicht.

Sorgfältige Messreihen an Silizium-Wafern mit unterschiedlich starker n-Dotierung haben die Entdeckung ermöglicht. © Björn Hoffmann

Eine überraschende Erkenntnis bei organisch-anorganischen Hybrid-Solarzellen hat ein Team um Silke Christiansen gewonnen: anders als erwartet, entspricht der Übergang zwischen der organischen leitfähigen Kontaktschicht aus PEDOT:PSS und dem Silizium-Absorbermaterial nicht einem Metall-Halbleiter-Kontakt (Schottky-Kontakt), sondern einem pn-Übergang zwischen zwei Halbleitermaterialien. Ihre Ergebnisse sind nun in dem Nature-Journal Scientific Reports publiziert und können neue Wege aufzeigen, hybride Solarzellen zu optimieren.

Das untersuchte System basiert auf konventionellen n-dotierten Siliziumwafern, die mit dem organischen hochleitfähigen Material PEDOT:PSS  beschichtet sind und einen Wirkungsgrad von etwa 14 % zeigen. Diese Material-Kombination wird aktuell auch von anderen Forschergruppen  intensiv untersucht.

„Wir haben systematisch die Kennlinien, Dunkelströme sowie die Kapazitäten von solchen Schichtsystemen ausgemessen, und zwar mit unterschiedlich dotierten Siliziumwafern“, erklärt Sara Jäckle, Erstautorin der Arbeit und Doktorandin im Team von Prof. Silke Christiansen (HZB-Institut für Nanoarchitekturen für die Energieumwandlung und Projektleiterin am MPI für die Physik des Lichts, Erlangen). Für einige Messungen arbeitete das Team auch mit der Arbeitsgruppe von Prof. Klaus Lips vom HZB-Institut für Nanospektroskopie zusammen.

Abhängigkeit von der n-Dotierung der Si-Wafer

„Dabei haben wir festgestellt, dass die Dunkelkennlinien sowie die Leerlaufspannung der Solarzellen von der n-Dotierung der Siliziumschicht abhängen. Dieses Verhalten und die Größenordnung der Messwerte passen jedoch überhaupt nicht zu einem typischen Schottky-Kontakt.“

Der Befund ist überraschend, denn n-Silizium ist ein typischer Halbleiter, während PEDOT:PSS üblicherweise als metallisch leitend beschrieben wird. Bislang wurde deshalb angenommen, dass zwischen diesen beiden Materialien ein typischer Metall-Halbleiter-Kontakt besteht, der durch die Schottky-Gleichung beschrieben werden kann.

Typischer Heteroübergang

Doch die Messdaten und der Abgleich mit theoretischen Modellierungen zeigen etwas anderes: Die organische, leitfähige Schicht verhält sich im Kontakt mit n-Silizium nicht wie ein Metall sondern wie ein p-Halbleiter. „Die Messergebnisse hängen von der Stärke der n-Dotierung ab, genau wie bei einem Heteroübergang zwischen einem p-Halbleiter und einem n-Halbleiter“, sagt Sara Jäckle.

Ergebnisse vermutlich auf weitere Hybrid-Systeme übertragbar

„Diese Arbeit betrifft einen ganz wichtigen Aspekt bei solchen hybriden Schichtsystemen, nämlich das Verhalten an der Grenzschicht”, sagt Silke Christiansen. „Die Ergebnisse sind vermutlich auch für andere hybride Systeme gültig, die für die Photovoltaik oder andere optoelektronische Anwendungen interessant sind, beispielsweise auch für Perowskit-Zellen. Sie geben uns neue Hinweise, wie wir gezielt an der Grenzflächenoptimierung arbeiten können”.


Anmerkung: Gerade ist der Sonderforschungsbereich SPP951- Hybrid Inorganic/Organic Systems for Opto-Electronics (HIOS) in die zweite Förderperiode gestartet. In einem Teilprojekt dieses SFBs wird das Team um Silke Christiansen die Forschung an  hybriden Grenzflächen fortsetzen.

arö


Das könnte Sie auch interessieren

  • Best Innovator Award 2023 für Artem Musiienko
    Nachricht
    22.03.2024
    Best Innovator Award 2023 für Artem Musiienko
    Dr. Artem Musiienko ist für seine bahnbrechende neue Methode zur Charakterisierung von Halbleitern mit einem besonderen Preis ausgezeichnet worden. Auf der Jahreskonferenz der Marie Curie Alumni Association (MCAA) in Mailand, Italien, wurde ihm der MCAA Award für die beste Innovation verliehen. Seit 2023 forscht Musiienko mit einem Postdoc-Stipendium der Marie-Sklodowska-Curie-Actions in der Abteilung von Antonio Abate, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP) am HZB.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.