poster prize for Laura Elisa Valle Rios student at the European Crystallographic Meeting (ECM29)

price ceremony at the ECM29

price ceremony at the ECM29

The poster contribution of Laura Elisa Valle Rios (HZB-Department Crystallography) was awarded the CrystEngComm poster price of the Royal Society of Chemistry at the 29th European Crystallographic Meeting (ECM29) in Rovinj (Croatia). Laura Elisa, a PhD student in the Marie-Curie Initial Training network KESTCELLS and the HZB Graduate School "Materials for Solar Energy Conversion" (MatSEC).

She presented results on structural properties of Kesterites (Cu2ZnSnSe4 - CZTSe) in relation to its stoichiometry deviations.

The best performances of Kesterite-based thin film solar cells with converion efficiencies of 12.6% were obtained with an absorber material quite different from the stoichiometric compound Cu2ZnSn(S,Se)4, especially with a Cu-poor/Zn-rich composition. Because the electronic properties of a semiconductor are strongly related to its crystal structure, it is of great interest to study the nature of stoichiometry deviations systematically and to connect issues such as phase existence limits.

Laura Elisa Valle Rios synthesized off-stoichiometric CZTSe powder samples by solid state reaction and studied the structural and chemical properties. Here she applied different analytical methods using also the HZB's large scale facilities BESSY II and BER II. Moreover she performed experiments at the Spallation Neutron Source (SNS) in Oakridge (US). With the results she obtained from complementary neutron and synchrotron X-ray diffraction experiments  she was able to prove  that CZTS can accomodate deviations from stoichiometry without collapse of the kesterite type structure by the formation of certain point defects. Laura Elisa could show correlations between chemical composition of the kesterite type semiconductor and intrinsic point defects and defect concentrations. Thus the crystal structure of CZTS can self-adapt to Cu-poor/Zn-rich and Cu-rich/Zn-poor compositions without any structural changes except in terms of the cation distribution.

Laura Elisa Valle Rios works at the HZB (EM-AKR) as a PhD student in the EU-funded Marie-Curie Initial Training Network KESTCELLS (Training for sustainable low cost PV technologies: development of kesterite based efficient solar cells). She is enrolled at the Freie Universtaet Berlin in the joint graduate school "Materials for Solar Energy Conversion" (MatSEC).

Susan Schorr

You might also be interested in

  • 40 years of research with synchrotron light in Berlin
    News
    14.09.2022
    40 years of research with synchrotron light in Berlin
    Press release _ Berlin, 14 September: For decades, science in Berlin has been an important driver of innovation and progress. Creative, talented people from all over the world come together here and develop new ideas from which we all benefit as a society. Many discoveries – from fundamental insights to marketable products – are made by doing research with synchrotron light. Researchers have had access to this intense light in Berlin for 40 years. It inspires many scientific disciplines and is an advantage for Germany.

  • Professorship at the University of Augsburg for Felix Büttner
    News
    29.08.2022
    Professorship at the University of Augsburg for Felix Büttner
    Felix Büttner has led a junior research group at HZB. Now he has accepted a call to the University of Augsburg. As head of a joint research group, he will continue his studies of magnetic skyrmions at BESSY II.
  • Humboldt Fellow Alexander Gray comes to HZB
    News
    12.08.2022
    Humboldt Fellow Alexander Gray comes to HZB
    Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.