Rohbauarbeiten für Beschleunigerhalle am HZB beginnen: Spatenstich für eine Testanlage eines Linearbeschleuniger mit Energierückgewinnung (ERL)

Spatenstich für die neue Beschleunigerhalle von bERLinPro. Zu sehen sind v.l.n.r: Jens Knobloch, Thomas Frederking, Anke Kaysser-Pyzalla, Andreas Jankowiak, Constanze Tibes (

Spatenstich für die neue Beschleunigerhalle von bERLinPro. Zu sehen sind v.l.n.r: Jens Knobloch, Thomas Frederking, Anke Kaysser-Pyzalla, Andreas Jankowiak, Constanze Tibes ( © Silvia Zerbe/HZB

Prof. Dr. Anke Kaysser-Pyzalla lobte die internationale Zusammenarbeit bei der Realisierung von bERLinPro.

Prof. Dr. Anke Kaysser-Pyzalla lobte die internationale Zusammenarbeit bei der Realisierung von bERLinPro.

Prof. Dr. Andreas Jankowiak, Projektleiter bERLinPro.

Prof. Dr. Andreas Jankowiak, Projektleiter bERLinPro.

Stelldichein in Adlershof: 200 Gäste kamen zum Spatenstich.

Stelldichein in Adlershof: 200 Gäste kamen zum Spatenstich.

Unmittelbar vor dem Beginn der Rohbauarbeiten wurde am 10. September 2015 der Spatenstich für die neue Beschleunigerhalle von bERLinPro gefeiert, in der eine kompakte Testanlage für einen Linearbeschleuniger mit Energierückgewinnung aufgebaut wird. Zirka 200 geladene Gäste verfolgten diesen Meilenschritt auf dem Weg zur Realisierung eines technologisch einzigartigen Projekts.

Die wissenschaftliche Geschäftsführerin des HZB, Prof. Dr. Anke Kaysser-Pyzalla, lobte die internationale Zusammenarbeit, die eine Voraussetzung für die Entwicklung einer neuen, faszinierenden Beschleunigertechnologie sei. Insbesondere dankte sie den Zuwendungsgebern für deren Engagement und Unterstützung.

Prof. Dr. Andreas Jankowiak, Projektleiter von bERLinPro, betonte, dass das HZB mit dem Projekt tatsächlich Neuland betrete und viele Beschleunigerphysiker in der nächsten Zeit gespannt nach Berlin blicken würden. Sein Institut will gemeinsam mit dem Team von Prof. Dr. Jens Knobloch einen Linearbeschleuniger mit Energierückgewinnung in Adlershof bauen. Es soll eine Testanlage entstehen, die alle Schlüsselkomponenten umfasst und die die grundsätzliche Anwendbarkeit dieser Technologie für zukünftige Großgeräte demonstriert. Die HZB-Forscher wollen mithilfe der Testanlage den Parameterraum studieren, um später solche Beschleunigeranlagen optimal bei höchsten Intensitäten für die Forschung betreiben zu können.

Von 2017 an werden die Komponenten für den ERL in der Beschleunigerhalle schrittweise aufgebaut, und ab 2018 beginnen die ersten Strahltests mit dem Ziel, 2020 die Anlage vollständig in Betrieb zu nehmen. Andreas Jankowiak betonte: „Dabei ist es die eigentliche Herausforderung, die verschiedenen Komponenten und neue Methoden zu entwickeln. Deshalb gilt hier im besonderen Maße: Der Weg ist das Ziel.“

Auch der Bau der Beschleunigerhalle ist ein schwieriges Projekt. Die Planer müssen dabei die Anforderungen des Strahlenschutzes berücksichtigen und die technische Versorgung zur Kühlung des supraleitenden Test-Beschleunigers sicherstellen. Frau Tibes vom betreuenden Architektenbüro DGI Bauwerk sagte, die Planungen seien extrem komplex und ohne Vorbild. Sie nannte die Beschleunigerhalle ein „Unikat für die Wissenschaft“, das unter Federführung der HZB-Bauabteilung (FM-B) nun errichtet wird.

Mit bERLinPro entsteht eine Testanlage für höchste Ströme und kleinste Emittanzen. Die Idee des Energy Recovery Linac wurde bereits in den 1960-iger Jahren formuliert. Es dauerte mehr als 30 Jahre, bis ab Anfang 2000 die ersten Anlagen, z.B. am Jefferson Lab, dem JAERI, Japan, ALICE, Daresbury Lab, und NOVOFEL, Budker Institut, in Betrieb genommen wurden. „Wir verstehen die Physik dieser Anlagen nun viel besser und haben die Voraussetzungen, die damit verbundenen Schwierigkeiten zu lösen“, so Jankowiak. Unter anderem müssen völlig neue Komponenten entwickelt werden, wie etwa eine hochbrillante Hochfrequenz-Photoelektronenquelle und supraleitenden Kavitäten für den kontinuierlichen (Dauerstrich) Betrieb bei höchsten Strömen.

Diese Entwicklungsarbeiten finden in nationalen und internationalen Kollaborationen, unter anderem mit dem DESY, dem Helmholtz-Zentrum Dresden-Rossendorf, dem Max-Born-Institut, dem Jefferson Laboratory, dem Brookhaven National Lab, der Cornell University und dem Budker Institut statt. Auch deutsche Universitäten, unter anderen in Dortmund, Rostock, Mainz und Berlin, sind an diesen Arbeiten beteiligt.

(Silvia Zerbe)

  • Link kopieren

Das könnte Sie auch interessieren

  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.
  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.