Helmholtz-Zentrum Berlin expands its solar fuel research: Kathrin Aziz-Lange starts with her new Helmholtz Young Investigator Group

<div id="infowindow_7baf4b2e2c_2d5f6a_2d11d2_2d8f20_2d0000c0e166dc_7d" class="infowindow_7baf4b2e2c_2d5f6a_2d11d2_2d8f20_2d0000c0e166dc_7d infoValueContainer">
<div class="readOnlyInfoValue">Dr. Kathrin Aziz-Lange</div>
<div class="readOnlyInfoValue">Foto: HZB / B. Schurian&nbsp;</div>
</div>

Dr. Kathrin Aziz-Lange
Foto: HZB / B. Schurian 

Dr. Kathrin Maria Aziz-Lange has won approval to set up a Helmholtz Young Investigator Group (YIG) addressing the topic of solar fuels at Helmholtz-Zentrum Berlin (HZB). She will receive 250,000 Euros in annual support for a period of five years, with half from the Initiative and Networking Fund of the Helmholtz Association and half financed by HZB. The YIG will investigate materials that enable water splitting using sunlight and thereby store solar energy chemically in form of hydrogen.

The Helmholtz Association selected a total of 17 excellent Young Investigators to set up their own research groups out of a field of 250 international competitors at the end of October. “We are pleased that Kathrin Aziz-Lange convinced the jury of her research plans in the highly competitive selection process, and that she will now expand the research on solar fuels at HZB”, says Prof. Anke Kaysser-Pyzalla, Scientific Director of HZB.

Aziz-Lange is especially interested in the role of defects such as voids in the structures of novel systems of materials. These voids can lead to desirable as well as undesirable properties. She therefore wants to observe how the voids originate in catalysts and light-absorbing materials, and investigate “in operando” as to how the voids behave when subjected to electrical voltage and illumination while in contact with electrolytes. She will be able to bring to bear a diverse arsenal of spectroscopic methods available at BESSY II, EMIL@BESSY II, and at the Berlin Joint Lab for Electrochemical Interfaces (BelChem) along with partners from the Max Planck Society and Technische Universität Darmstadt.

Moreover, the programme enhances networking of Helmholtz Zentrums and universities. Kathrin Aziz-Lange, for example, is also active at Bielefeld University preparing for a university career.

About theHelmholtz Young Investigator Group

The funding programme for the Helmholtz YIGs is oriented toward highly qualified young scientists who have completed their doctoral dissertations during the previous two to six years. All the groups undergo interim reviews after about four years. If these reviews are positive, the heads of the groups generally receive long-term offers at the respective Helmholtz research centres.

Half the costs of the YIG are covered by the Initiative and Networking Fund of the President of the Helmholtz Association. The other half is contributed by the Helmholtz centres. The heads of the YIGs can generally finance three to four positions for their group as well as conference trips and portions of the required equipment and materials costs, in addition to their own positions.

For further information:
http://www.helmholtz.de/en/jobs_talents/funding_programs/helmholtz_young_investigators_groups/

arö


You might also be interested in

  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.