Topologische Isolatoren: Magnetismus spielt keine Rolle beim Zusammenbruch der Leitfähigkeit

In reinem Bismut-Selenid (links) gibt es keine Bandlücke. Bei Zugabe von magnetischem Mangan (4%, 8%) bildet sich jedoch eine Bandlücke (gestrichelte Linien). Dadurch verschwindet die elektrische Leitfähigkeit. Dieser Effekt ist sogar bei Raumtemperatur nachweisbar und hat wider Erwarten nichts mit dem Magnetismus des Mangans zu tun, der sich erst unterhalb von 10 Kelvin (minus 263 Grad Celsius) einstellt.

In reinem Bismut-Selenid (links) gibt es keine Bandlücke. Bei Zugabe von magnetischem Mangan (4%, 8%) bildet sich jedoch eine Bandlücke (gestrichelte Linien). Dadurch verschwindet die elektrische Leitfähigkeit. Dieser Effekt ist sogar bei Raumtemperatur nachweisbar und hat wider Erwarten nichts mit dem Magnetismus des Mangans zu tun, der sich erst unterhalb von 10 Kelvin (minus 263 Grad Celsius) einstellt. © HZB

Diese Messdaten zeigen, dass die magnetische Ordnung in Proben mit 4 % Mangan bzw. 8 % Mangan erst unterhalb von 10 Kelvin (also bei minus 263 Grad Celsius) beginnt.

Diese Messdaten zeigen, dass die magnetische Ordnung in Proben mit 4 % Mangan bzw. 8 % Mangan erst unterhalb von 10 Kelvin (also bei minus 263 Grad Celsius) beginnt. © HZB

Werden Topologische Isolatoren mit magnetischen Fremdatomen dotiert, dann verliert ihre Oberfläche ihre Leitfähigkeit. Doch anders als bisher angenommen, spielt dabei der Magnetismus, der Fremdatome keine Rolle. Dies zeigten Experimente an der Synchrotronquelle BESSY II des HZB, die nun in Nature Communications veröffentlicht sind.  Das Verständnis dieser Effekte ist eine wichtige Voraussetzung, um Topologische Isolatoren in der Informationstechnologie anwenden zu können.

Theoretisch schienen Topologische Isolatoren bisher gut verstanden. Die Elektronen sind in diesen Materialien nur in zwei Dimensionen beweglich, nämlich entlang der Oberflächen und verhalten sich dabei wie masselose Teilchen. Topologische Isolatoren sind daher an ihrer Oberfläche hochleitfähig, im Innern dagegen Isolatoren. Einzig magnetische Felder würden diese Beweglichkeit stören können, so die Theorie. Nun haben Physiker um Oliver Rader und Jaime Sánchez-Barriga aus dem HZB gemeinsam mit Teams anderer HZB-Abteilungen und Gruppen aus Österreich, Tschechien, Russland und Theoretikern aus München diese These widerlegt.

Sie untersuchten dafür Proben aus Bismut-Selenid, einem klassischen Topologischen Isolator. Er ist wie Blätterteig aus unzähligen extrem dünnen Schichten aufgebaut. Die Proben waren mit dem magnetischen Element Mangan (Mn) dotiert (Bi1_xMnx)2Se3 ), wobei die Konzentration des Mangans variiert wurde. Nach der bisherigen Annahme würde sich durch die Dotierung mit den magnetischen Fremdatomen eine sogenannte Bandlücke zwischen den „erlaubten“ Elektronenzuständen öffnen. Dadurch wird die vormals leitfähige Oberfläche isolierend. Mit der Bandlücke gewinnen die Elektronen außerdem einen Teil ihrer Masse zurück. Dabei sollte der Magnetismus der Fremdatome die entscheidende Rolle spielen, so die bisherige Theorie.

Theorie widerlegt: Magnetismus der dotierten Fremdatome beeinflusst nicht die Beweglichkeit der Elektronen

Die Physiker konnten in den dotierten Proben tatsächlich nachweisen, dass sich eine Bandlücke bildet. Die Masse der Elektronen stieg von null auf ein Sechstel der Masse freier Elektronen. Die Bandlücke bildete sich jedoch unabhängig von der Stärke der Magnetisierung und sogar dann, wenn die Probe mit nichtmagnetischen Fremdatomen versetzt war. Damit bewiesen die Physiker, dass die Bandlücke nicht auf die ferromagnetische Ordnung im Inneren oder an der Oberfläche des Materials zurückgeht und auch nicht auf die lokalen magnetischen Momente des Mangans zurückzuführen ist.

„Wir haben sogar Oberflächenbandlücken gemessen, die zehnmal größer sind als die theoretisch vorhergesagten magnetischen Bandlücken und zwar unabhängig davon, ob wir magnetische oder nichtmagnetische Fremdatome eingebaut hatten“, sagt Jaime Sánchez-Barriga.

Stattdessen haben die Forscher eine andere Deutung vorgeschlagen: Mithilfe der sogenannten resonanten Photoemissions-Spektroskopie haben sie Streuprozesse beobachtet, die zum Entstehen der Bandlücke führen könnten. Die Forscher halten es daher für denkbar, dass die Anwesenheit der Fremdatome den Elektronen ermöglicht, die Oberfläche zu verlassen und sozusagen im Volumen zu verschwinden.

„Für uns als Experimentatoren ist es immer interessant, wenn ein Experiment nicht die theoretische Erwartung bestätigt. Dass die beobachtete Bandlücke deutlich größer ist als von der Theorie vorhergesagt, ist ein spannendes Ergebnis. Um sicherzugehen, dass wir uns nicht irren, haben wir das ganze Arsenal an Analyse-Möglichkeiten bei BESSY II genutzt, zum Beispiel die Photoelektronen-Mikroskopie und hohe Magnetfelder bis 7 Tesla. Dadurch können wir wirklich ausschließen, dass ein Magnetismus, etwa auf der Nanometerskala, doch als mögliche Ursache auftritt“, erklärt Oliver Rader.

Laut Rader lassen sich zwei Schlussfolgerungen schon jetzt aus der Arbeit ziehen: Zum einen zeigt sich, dass „topologisch geschützte“ Zustände bislang noch nicht vollständig verstanden sind. Zum anderen bedeutet es, dass bislang vernachlässigte Fragestellungen nun in den Vordergrund treten. Wie lassen sich durch die Wahl der magnetischen Fremdatome Streuprozesse minimieren? Und welche Rolle spielt die Einbauposition der Fremdatome im Wirtsgitter? Da Topologische Isolatoren interessante Kandidaten für künftige energieeffiziente Informationstechnologien sind, lohnt es sich, diesen Fragen auf den Grund zu gehen.


Publication in Nature Communications, DOI: 10.1038/ncomms10559 Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi1-x Mnx) 2 Se3
J. Sanchez-Barriga, A. Varykhalov, G. Springholz, H. Steiner, R. Kirchschlager, G. Bauer, O. Caha, E. Schierle, E. Weschke, A.A. Ünal, S. Valencia, M. Dunst, J. Braun, H. Ebert, J. Minar, E. Golias, L.V. Yashina, A. Ney, V. Holy, & O. Rader

arö


Das könnte Sie auch interessieren

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.
  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.