Koexistenz von Supraleitung und Ladungsdichtewellen beobachtet

Mit Hilfe der EELS-Elektronenspektroskopie lassen sich im Rasterelektronenmikroskop die einzelnen Atome in der Heterostruktur kartieren: Die supraleitenden YBaCuO-Regionen sind an Yttrium (Blau) und Kupfer (pink) erkennbar, während in der ferromagnetischen Schicht Mangan (grün) und Lanthan (rot) eingebaut ist.

Mit Hilfe der EELS-Elektronenspektroskopie lassen sich im Rasterelektronenmikroskop die einzelnen Atome in der Heterostruktur kartieren: Die supraleitenden YBaCuO-Regionen sind an Yttrium (Blau) und Kupfer (pink) erkennbar, während in der ferromagnetischen Schicht Mangan (grün) und Lanthan (rot) eingebaut ist. © MPI Stuttgart

Physiker haben an BESSY II ein Materialsystem aus dünnen ferromagnetischen und supraleitenden Schichten untersucht. An den Grenzflächen bildeten sich Ladungsdichtewellen aus, die erstaunlich weit in die supraleitende Schicht hineinreichten. Die Ergebnisse zeigen neue Wege auf, um die Supraleitung zu beeinflussen und sind nun in Nature Materials publiziert.

Hochtemperatursupraleiter sind seit gut 30 Jahren bekannt: es sind besondere Metalloxid-Verbindungen, die Strom ohne Energieverlust leiten können. Anders als konventionelle Supraleiter müssen sie dafür nicht bis nahe an den absoluten Temperatur-Nullpunkt gekühlt werden. Vielmehr schaffen sie dies bei vergleichsweise hohen Temperaturen.

Ein typischer Hochtemperatursupraleiter ist Yttrium-Barium-Kupferoxid (YBaCuO) mit einer Sprungtemperatur von 92 Kelvin (minus 181 Grad Celsius). Das Kühlen mit flüssigem Stickstoff reicht aus, um diese Temperatur zu unterschreiten. Ein Team um Prof. Bernhard Keimer vom MPI für Festkörperforschung in Stuttgart und Dr. Eugen Weschke vom HZB haben nun in einem System aus dünnen YBaCuO- sowie ferromagnetischen Nanoschichten entdeckt, wie sich Valenzelektronen verschieben lassen.

Kleinste kollektive Verschiebungen der Ladungen beobachtet

Mit resonanter Röntgenstreuung haben sie an BESSY II die Grenzflächen zwischen den ferromagnetischen und supraleitenden Schichten untersucht. Alex Frano konnte in seiner Doktorarbeit nachweisen, dass es sich dabei die Valenzelektronen in den Kupferatomen der YBaCuO-Dünnschicht minimal verschieben. Diese Verschiebungen führen zu so genannten Ladungsdichtewellen in der YBaCuO-Schicht, und zwar nicht nur in der unmittelbaren Nähe der Grenzflächen sondern über die gesamte Dicke der Schicht. „Das ist erstaunlich, weil frühere Untersuchungen gezeigt hatten, dass Supraleitung die Ausbildung von Ladungsdichtewellen unterdrückt“, erklärt Frano.

Ladungsdichtewelle trotz Supraleitung stabil

„Indem wir die Grenzflächen in die Heterostrukturen gebracht haben, ist es gelungen die Ladungsdichtewellen in Gegenwart der Supraleitung zu stabilisieren“, erläutert Eugen Weschke. Die YBaCuO-Schichten bleiben supraleitend, obwohl sich gleichzeitig die Ladungsdichten periodisch ändern. „Wie genau diese Koexistenz auf mikroskopischer Skala aussieht, ist eine spannende Frage, die mit weiteren Experimenten untersucht werden muss“, so der HZB-Forscher. Besonders interessant wäre es herauszufinden, ob man über diesen Mechanismus und durch weiteres geschicktes Design der Grenzflächen den supraleitenden Zustand gezielt kontrollieren kann.

Original-Publikation:

Long-range charge-density-wave proximity effect at cuprate/manganate interfaces, A. Frano, S. Blanco-Canosa, E. Schierle, Y. Lu, M. Wu, M. Bluschke, M. Minola, G. Christiani, H. U. Habermeier, G. Logvenov, Y. Wang, P. A. van Aken, E. Benckiser, E. Weschke, M. Le Tacon & B. Keimer, Nature Materials (2016) doi: 10.1038/nmat4682

arö


Das könnte Sie auch interessieren

  • Best Innovator Award 2023 für Artem Musiienko
    Nachricht
    22.03.2024
    Best Innovator Award 2023 für Artem Musiienko
    Dr. Artem Musiienko ist für seine bahnbrechende neue Methode zur Charakterisierung von Halbleitern mit einem besonderen Preis ausgezeichnet worden. Auf der Jahreskonferenz der Marie Curie Alumni Association (MCAA) in Mailand, Italien, wurde ihm der MCAA Award für die beste Innovation verliehen. Seit 2023 forscht Musiienko mit einem Postdoc-Stipendium der Marie-Sklodowska-Curie-Actions in der Abteilung von Antonio Abate, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP) am HZB.
  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.