Two Freigeist Fellows interweave their research at HZB

Fabian Weber (right) is investigating the dynamics of electron processes within graphene-oxide quantum dots as a member of the team headed by Dr. Annika Bande (left). Quantum dots like these as catalysts could help make solar water splitting more efficient. Using Weber’s theoretical model, a much greater amount of information can be obtained from the empirical data gathered by the group headed by Dr. Tristan Petit.

Fabian Weber (right) is investigating the dynamics of electron processes within graphene-oxide quantum dots as a member of the team headed by Dr. Annika Bande (left). Quantum dots like these as catalysts could help make solar water splitting more efficient. Using Weber’s theoretical model, a much greater amount of information can be obtained from the empirical data gathered by the group headed by Dr. Tristan Petit. © HZB

Initial calculations show how the electron density changes over a graphene oxide nanoparticle in solution. The electron density is below average in the areas shown in red, while it is above average in the blue areas. The graphene particle is made of carbon atoms (black) that bind in some places to the oxygen (red) , or in some to the hydrogen (white).

Initial calculations show how the electron density changes over a graphene oxide nanoparticle in solution. The electron density is below average in the areas shown in red, while it is above average in the blue areas. The graphene particle is made of carbon atoms (black) that bind in some places to the oxygen (red) , or in some to the hydrogen (white). © Fabian Weber

Two Freigeist Fellows are conducting research at the HZB Institute for Methods of Material Development through support received from the Volkswagen Foundation. Theoretical chemist Dr. Annika Bande is modelling fast electron processes, while Dr. Tristan Petit is investigating carbon nanoparticles. Annika Bande has now been awarded an ancillary grant of an additional 150,000 Euros from the Volkswagen Foundation to fund another doctoral student position for three years. The doctoral research will connect the two Freigeist research projects with one another.

Doctoral student Fabian Weber is working in Bande’s theory group and will be carrying out electron transfer calculations in a material system being investigated by Petit and his team. “We are concentrating on a special class of what are known as quantum dots, made of graphene oxide nanoparticles”, explains Weber. The group headed by Petit will be analysing nano-graphene oxide using various spectroscopic methods.

Catalyst for solar hydrogen

This is because graphene-oxide nanoparticles are good catalysts, as well for splitting water using solar energy and generating hydrogen. Hydrogen is a versatile energy medium that can be utilised as fuel or to generate environmentally friendly electric power in a fuel cell.

Understanding the system

With the help of theoretical modelling, the empirical data obtained on nanoparticles of graphene oxides can yield considerably more information and also new insights into the ultrafast dynamics of hydrogen bonding. “We start with existing theories and see how we can use them to model exactly what happens with the transfer of electrons during a catalytic reaction”, explains Annika Bande. “We are able to compare our ideas directly with the empirical results in this research project and really come to better understand the system. In addition, the topic is extremely important – not just for purposes of pure research, but also for ensuring society’s energy supply.”


arö

You might also be interested in

  • Humboldt Fellow Alexander Gray comes to HZB
    News
    12.08.2022
    Humboldt Fellow Alexander Gray comes to HZB
    Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.
  • Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Science Highlight
    11.08.2022
    Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Electrical energy from wind or sun can be stored as chemical energy in hydrogen, an excellent fuel and energy carrier. The prerequisite for this, however, is efficient electrolysis of water with inexpensive catalysts. For the oxygen evolution reaction at the anode, nanostructured nickel silicide now promises a significant increase in efficiency. This was demonstrated by a group from the HZB, Technical University of Berlin and the Freie Universität Berlin as part of the CatLab research platform with measurements among others at BESSY II.
  • Michelle Browne sets up a young investigator research group on electrocatalysis at HZB
    News
    01.08.2022
    Michelle Browne sets up a young investigator research group on electrocatalysis at HZB
    Dr. Michelle Browne establishes her own young investigator group at the HZB . Starting in August, the group is co-funded by the Helmholtz Association for the next five years. The electrochemist from Ireland concentrates on electrolytically active novel material systems and wants to develop next-generation electrocatalysts, for example hydrogen production. At HZB she will find the perfect environment to conduct her research.