Methodenentwicklung am HZB: Ionische Flüssigkeiten vereinfachen Laserexperimente mit flüssigen Proben

Ein Laserpuls versetzt die gelösten Moleküle in einen angeregten elektronischen Zustand. Dann kann die Bindungsenergie der angeregten Elektronen gemessen werden. Solche Laserexperimente sind nur im Ultrahochvakuum möglich.

Ein Laserpuls versetzt die gelösten Moleküle in einen angeregten elektronischen Zustand. Dann kann die Bindungsenergie der angeregten Elektronen gemessen werden. Solche Laserexperimente sind nur im Ultrahochvakuum möglich. © HZB

Das Histogramm zeigt die Intensität der gemessenen Elektronen (Farbleiste rechts) mit bestimmter Bindungsenergie kurze Zeit nach der Anregung. Daraus lässt sich rekonstruieren, wie angeregte Zustände in den Grundzustand zurückfallen.

Das Histogramm zeigt die Intensität der gemessenen Elektronen (Farbleiste rechts) mit bestimmter Bindungsenergie kurze Zeit nach der Anregung. Daraus lässt sich rekonstruieren, wie angeregte Zustände in den Grundzustand zurückfallen. © HZB

Ein HZB-Team hat eine neue Methode entwickelt, um Moleküle in Lösung mit Laserexperimenten analysieren zu können. Dies war bisher schwierig, weil sich dafür die Probe im Vakuum befinden muss, Flüssigkeiten unter Vakuum aber verdampfen.  Dem Team ist es nun gelungen, das Lösungsmittel durch eine ionische Flüssigkeit zu ersetzen, die im Vakuum nicht verdampft: So können die  Moleküle mit einem Laserpuls angeregt werden, und das Verhalten der angeregten Zustände im Vakuum gemessen werden. Dies gibt Aufschluss über physikalische und chemische Prozesse in neuartigen flüssigen Energie-Materialien, wie sie etwa in organischen Solarzellen oder Katalysatoren zum Einsatz kommen.

Nun hat eine Gruppe um Prof. Dr. Emad Aziz erstmals gezeigt, dass es eine einfachere Alternative gibt, um PES-Experimente auch an gelösten Proben durchzuführen: Sie ersetzten das organische Lösungsmittel durch eine so genannte ionische Flüssigkeit. Diese besteht aus organischen Molekülen, die sich untereinander durch ionische Kräfte (also wie ein Salz) vernetzen und bei Raumtemperatur flüssig sind. Ionische Flüssigkeiten verdampfen selbst im Ultrahochvakuum nicht.

Roter Farbstoff angeregt

Es gelang ihnen, einen roten Farbstoff(1), der als Prototyp für Farbstoffe in organischen Solarzellen gilt, in einer ionischen Flüssigkeit(2) zu lösen und mit Photoelektronen-Spektroskopie zu untersuchen. Dabei regten sie den Farbstoff mit einem Laserpuls an. In der ersten Pikosekunde (10-12s) danach tastete der Probe-Puls in 150 Einzelschritten die Bindungsenergie der angeregten Elektronen ab. Das aus diesen Daten erstellte Histogramm zeigt, über welche Zwischenzustände die angeregten Elektronen ihre Energie abgeben. Da die lichtinduzierten Prozesse in diesem Farbstoff bereits gut untersucht sind, konnten die Physiker ihre experimentellen Daten mit bereits vorliegenden Resultaten vergleichen.

Resultate stimmen überein

„Das alternative Lösungsmittel hat keinen Einfluss auf die ultraschnellen Prozesse: Alle Prozesse, die im Lauf dieser ersten Pikosekunde ablaufen, decken sich perfekt mit Resultaten aus Messungen aber auch mit Simulationen der Prozesse im konventionellen Lösungsmittel“, erklärt Mario Borgwardt, der die Experimente im Rahmen seiner Doktorarbeit durchgeführt hat. Ein wichtiges Ergebnis: Denn die schnellen Prozesse sind es, die zum Beispiel in einer Solarzelle zu Verlusten führen. Als Fazit hält Emad Aziz fest: „Ionische Flüssigkeiten sind eine gute Alternative zu herkömmlichen Lösungsmitteln, um Moleküle in Lösung mit zeitaufgelöster Photoelektronen-Spektroskopie zu analysieren.“

Ausblick: Untersuchungen an lichtreaktiven Katalysatoren

Nun will das Team auch Nanopartikel, insbesondere Nanodiamanten aus Kohlenstoff, in ionischen Flüssigkeiten lösen und mit PES untersuchen. In einem großen Kooperationsprojekt, DIACAT, an dem das HZB mit vielen Partnern arbeitet, testen sie die Eignung von Nanodiamanten als lichtreaktive Katalysatoren für die Erzeugung von solaren Brennstoffen. Die neue Methode kommt da gerade zur richtigen Zeit.

Zur Publikation: "Ultrafast excited states dynamics of [Ru(bpy)3]2+ dissolved in ionic liquids", Mario Borgwardt, Martin Wilke, Igor Yu. Kiyan and Emad F. Aziz, Physical Chemistry Chemical Physics der Royal Academy of Chemistry (2016)
DOI: 10.1039/C6CP05655E

Anmerkung: Die Experimente fanden am Joint Lab für Ultraschnelle Dynamik in Lösungen und an Grenzflächen (JULiq) statt, das das HZB gemeinsam mit der Freien Universität zu Berlin betreibt. Perspektivisch baut das HZB am Campus Wannsee ein neues großes Laserlabor auf, das ebenfalls von Emad Aziz geleitet wird.

 (1): Übergangsmetall-Komplex Ruthenium trisbipyridin [Ru(bpy)3]2+
 (2): 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM][TfO]

arö


Das könnte Sie auch interessieren

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.
  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.