Das Neutronenstreuinstrument BioRef wird am ANSTO in Australien wieder aufgebaut

Am 19. Dezember 2016 wurde das BioRef aus dem HZB abtransportiert und nach Australien verschifft. die Reise wird knapp zwei Monate dauern.

Am 19. Dezember 2016 wurde das BioRef aus dem HZB abtransportiert und nach Australien verschifft. die Reise wird knapp zwei Monate dauern. © D. Höcker/HZB

Am 19. Dezember 2016 hat das Neutronenstreuinstrument BioRef seine etwa zwei Monate dauernde Reise vom HZB nach Australien angetreten. Dort wird es bei der Australian Nuclear Science and Technology Organisation (ANSTO) an der Neutronenquelle OPAL in Sydney wieder aufgebaut. Ab 2018 soll es unter dem Namen „Spatz“ der internationalen Wissenschaftsgemeinschaft zur Verfügung stehen.

ANSTO betreibt die Forschungsneutronenquelle OPAL mit dem Zentrum für Neutronenstreuung in Lucas Heights, Sydney. OPAL gehört zu den neuesten und erfolgreichsten Neutronenquellen weltweit und ANSTO plant den weiteren Ausbau der Neutronenquelle und der Neutronenforschung.

Seit einigen Jahren besteht eine enge Zusammenarbeit mit dem HZB, insbesondere bei der Forschung an Energie-Materialien. Im Oktober 2016 schlossen beide Einrichtungen eine neue Kooperationsvereinbarung ab, um diese Zusammenarbeit weiter zu intensivieren. Sie streben unter anderem einen regen Austausch der Wissenschaftlerinnen und Wissenschaftler von ANSTO und HZB an und wollen auch im Bereich der Nachwuchsförderung noch stärker zusammenarbeiten. Von der Berliner Neutronenquelle BER II, die Ende 2019 abgeschaltet wird, übernimmt ANSTO nun das BioRef-Reflektometer, das Forschung an weicher Materie, Fest-Flüssig-Grenzflächen und Dünnschichten ermöglicht.

Im Dezember wurde das BioRef verpackt und nach Australien verschifft. In 2017 wird es bei ANSTO neu aufgebaut und in Betrieb genommen. Ab 2018 soll es dann wieder für die Forschung zur Verfügung stehen, unter dem Namen „Spatz“, als Referenz an seine deutsche Herkunft. Für die deutsche Nutzerschaft wird dort explizit Messzeit vorgehalten.

Um den Wissenstransfer in die Neutronengemeinschaft und die Nachnutzung von Neutroneninstrumenten zu gewährleisten, strebt das HZB auch mit anderen Forschungseinrichtungen in Europa und der Welt Kooperationsvereinbarungen an.  

red.


Das könnte Sie auch interessieren

  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.
  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.