The BioRef neutron instrument to be set up again at ANSTO in Australia

BioRef was transported from HZB on December 19, 2016 and shipped to Australia. The trip will take about two months.

BioRef was transported from HZB on December 19, 2016 and shipped to Australia. The trip will take about two months. © D. Höcker/HZB

The BioRef neutron instrument commenced its roughly two-month journey from HZB to Australia on December 19, 2016. It will be set up again at the OPAL neutron source there, part of the Australian Nuclear Science and Technology Organisation (ANSTO) in Sydney. It is expected to be available to the international scientific community beginning in 2018 under the name "Spatz".

ANSTO operates the OPAL neutron source as part of the Centre for Neutron Scattering in the Lucas Heights quarter of Sydney. OPAL is one of the newest and most successful neutron sources in the world and ANSTO is planning further expansion of the neutron source and neutron research.

There has been close cooperation with the HZB for several years, in particular in research on energy materials. The two institutions entered into a new agreement in October 2016 to intensify this cooperation. Among other aspects, they will strive for an active exchange of ANSTO and HZB scientists, and they intend to cooperate more closely in the area of support for junior scientists as well. ANSTO is taking over the BioRef reflectometer, which facilitates research on soft matter, solid/liquid interfaces, and thin films, from the BER II neutron source in Berlin that will close at the end of 2019.

BioRef was packed up in December and shipped to Australia. It will be set up anew at ANSTO and commissioned in 2017. It will then become available for research again beginning in 2018 under the name “Spatz”, a reference to its German origins. Instrument time will be explicitly reserved there for the German user group.

In order to ensure the transfer of knowledge to the neutron community and the continued use of neutron instruments, HZB is also working on cooperative agreements with other research institutions in Europe and the world.

red.


You might also be interested in

  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.
  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    26.02.2024
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While their ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.