NEAT starts user operation

Gerrit Günther und Veronka Grzymek help Zhilun Lu with the experiment.

Gerrit Günther und Veronka Grzymek help Zhilun Lu with the experiment. © HZB

The newly built time of flight spectrometre NEAT has welcomed its first users: Jie Ma from Shanghai Jiao Tong University and his colleague Zhilun Lu examined magnetic excitations in crystalline samples and enjoyed fast data rate and high flexibility of instrumental configurations. NEAT team is now looking forward to further new studies and user experiments!     

The scientists from Shanghai did find what they were looking for, after only 60 minutes of data collection: “Our experiment was very successful and we hope to publish the results soon”, Zhilun Lu said.

Neutron time-of-flight spectrometer NEAT has a long history of successful application to study dynamics and function on very broad time and space domains ranging from 10-14 – 10-10 seconds and from 0.05 to up to about 5 nanometers respectively. Started originally in 1995 as NEAT I, NEAT II has been fully rebuild in order to address the needs of the user community for more powerful instruments. The upgrade started in 2010 after a rigorous internal and external selection process and resulted in 70 fold higher flux and a number of new instrumental capabilities including an improved angular resolution, larger accessible wavelength range and a design suited for high magnetic field experiments up to 15 Tesla.

 

red.


You might also be interested in

  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • Fertilisation under the X-ray beam
    Science Highlight
    19.03.2024
    Fertilisation under the X-ray beam
    After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF. 
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.