Themen: Energie (310) Solare Brennstoffe (75)

Science Highlight    26.04.2017

Nanodiamanten als Energiematerialien: kleine „Anhänger“ mit großer Wirkung

Die Nanodiamanten in Lösung wurden mit unterschiedlichen Molekülgruppen modifiziert.
Copyright: HZB

Ein internationales Forscherteam hat neue Einblicke in die Wechselwirkungen zwischen Nanodiamanten und Wassermolekülen gewonnen. Durch Versuche an Synchrotronquellen konnten sie feststellen, dass kleine Molekülgruppen auf den Nanodiamantoberflächen großen Einfluss auf das Wasserstoffbrücken-Netzwerk ausüben. Dies könnte insbesondere für (photo)-katalytische Anwendungen interessant sein, zum Beispiel für die Produktion von solaren Brennstoffen mit Kohlendioxid und Licht.

Diamanten kennen wir als durchsichtige schimmernde Kristalle, die in Wasser rasch versinken. Aber tatsächlich kommt es darauf an, wie groß die Diamantkristalle sind. Die allerkleinesten solcher Kristalle, die nur wenige Nanometer dick sind, schweben in Wasser und bilden eine ölige, schwarze Mischung, ein so genanntes Kolloid. Solche Nanodiamanten in Lösung lassen sich vielseitig anwenden, zum Beispiel in der medizinischen Forschung oder als metall-freie Katalysatoren für die Umwandlung von Licht in chemische Energie.  

Was passiert zwischen Nanodiamanten und Wasser?

Dabei spielen die Wechselwirkungen zwischen den Nanopartikeln und den umgebenden Wassermolekülen eine extrem wichtige Rolle. Sie entscheiden darüber, ob das Kolloid stabil bleibt oder sich entmischt, bestimmen die optischen Eigenschaften, aber vor allem auch die chemische und katalytische Reaktivität. Was jedoch im Detail an den Grenzflächen zwischen Nanodiamanten und Wassermolekülen passiert, war bislang kaum bekannt.

Oberflächen mit Molekülen modifiziert

Nun hat eine internationale Kooperation zwischen russischen, japanischen, amerikanischen, französischen und deutschen Forschungsgruppen erstmals die Wechselwirkungen zwischen Nanodiamanten und Wassermolekülen genauer untersucht. Durch die Kombination verschiedener spektroskopischer Methoden an den Synchrotronquellen BESSY II am HZB in Berlin und an UVSOR III in Japan gelang es ihnen, die Wechselwirkungen im Einzelnen aufzuschlüsseln. Dafür modifizierten sie die Oberflächen der Nanodiamanten, mit Wasserstoff (-H) oder kleinen Molekülen, die an den Oberflächen der Nanodiamanten andockten, zum Beispiel Karboxyl-Gruppen (-COOH) und Hydroxylgruppen (–OH).

H-Atome könnten katalytische Aktivität steigern

Dabei zeigte sich, dass die Oberflächen-Gruppen einen unterschiedlich starken Einfluss auf die Wasserstoffbrücken-Netzwerke im Kolloid ausüben. Während Hydroxyl- und Karboxyl-Gruppen an den Nanodiamanten die Anordnung der umgebenden Wassermoleküle nur wenig veränderten, führten angehängte Wasserstoffatome zu einer deutlichen Veränderung: „Die Wasserstoffbrücken zwischen den Wassermolekülen sind viel schwächer als die, die man in normalem Wasser findet“,  sagt der HZB-Physiker Dr. Tristan Petit.  Dies könnte mit der Anreicherung von Elektronen an den Grenzflächen zwischen Nanodiamanten und Wasser zusammenhängen, vermuten die Forscher. „Diamant-Oberflächen mit angelagerten Wasserstoffatomen setzen effizient Elektronen in Wasser frei, was die Reduktion von CO2 in Wasser mit Hilfe von UV-Licht ermöglichen könnte“, erklärt Petit. „Die einzigartige Struktur von Wasser, die mit den hydrogenierten Oberflächen einhergeht, spielt sicher eine bislang unterschätzte Rolle in diesem aufregenden Prozess.”

The Journal of Physical Chemistry, Part C (2017): "Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds"; Petit, Tristan; Puskar, Ljiljana; Dolenko, Tatiana; Choudhury, Sneha; Ritter, Eglof; Burikov, Sergey; Laptinskiy, Kirill; Brzustowski, Quentin; Schade, Ulrich; Yuzawa, Hayato; Nagasaka, Masanari; Kosugi, Nobuhiro; Kurzyp, Magdalena; Venerosy, Amélie; Girard, Hugues; Arnault, Jean-Charles; Osawa, Eiji; Nunn, Nicholas; Shenderova, Olga; Aziz, Emad.

DOI: 10.1021/acs.jpcc.7b00721

arö


           



Das könnte Sie auch interessieren
  • <p>Im Innovationslabor HySPRINT arbeiten HZB-Teams an neuen Verfahren zur Herstellung von Perowskit-Solarzellen.</p>NACHRICHT      16.05.2019

    Europäische Perowskit-Initiative EPKI gestartet

    Perowskit-basierte Solarzellen haben in den letzten zehn Jahren enorme Fortschritte gemacht und erreichen im Labormaßstab bereits Wirkungsgrade von 24,2% (Anfang 2019) in Single-Junction-Architekturen und bis zu 28% im Tandem mit kristallinem Silizium. Dies macht sie zu der Solartechnologie, die sich bis heute am schnellsten entwickelt. Das Helmholtz-Zentrum Berlin hat in den letzten Jahren mit dem HySPRINT Projekt und der Rekrutierung talentierter Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler eine erhebliche Forschungskapazität im Bereich Perowskit-Materialien aufgebaut und beteiligt sich an der nun gestarteten Europäischen Perowskit-Initiative EPKI. [...]


  • NACHRICHT      15.05.2019

    Das HZB auf der INTERSOLAR in München

    Das Helmholtz-Zentrum Berlin (HZB) präsentiert sich vom 15. bis 17. Mai auf der INTERSOLAR in München, der weltweit größten Solarmesse. Das HZB zählt international zu den führenden Forschungszentren im Bereich der Solarenergie und zeigt neueste Entwicklungen in der Photovoltaik und bei den solaren Brennstoffen. Das HZB bietet vielseitige Kooperationsmöglichkeiten für Unternehmen – von der Auftragsforschung bis zum gemeinsamen Forschungsprojekt. [...]


  • NACHRICHT      14.05.2019

    Bernd Stannowski ist Professor an der Beuth Hochschule für Technik Berlin

    Prof. Dr. Bernd Stannowski hat einen Ruf auf eine gemeinsame S-Professur für „Photovoltaik“ an die Beuth Hochschule für Technik Berlin erhalten und angenommen. Der Physiker leitet die Arbeitsgruppe „Silizium-Photovoltaik“ am Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik Berlin (PVcomB) des HZB. [...]




Newsletter