Intersolar Europe in München: HZB-Forschung trifft Solarwirtschaft

Die Intersolar Europe ist die weltweit f&uuml;hrende Fachmesse f&uuml;r die Solarwirtschaft und ihre Partner. Sie findet j&auml;hrlich in M&uuml;nchen statt.</p>
<p>&copy; Solar Promotion GmbH

Die Intersolar Europe ist die weltweit führende Fachmesse für die Solarwirtschaft und ihre Partner. Sie findet jährlich in München statt.

© Solar Promotion GmbH

Das Helmholtz-Zentrum Berlin (HZB) präsentiert auf der großen internationalen Photovoltaik-Fachmesse vom 31. Mai bis 2. Juni 2017 Forschungsprojekte zur Solarenergie und stellt Kooperationsmöglichkeiten mit der Industrie im Bereich der Photovoltaik (PV) vor.

Die Intersolar Europe ist eine der wichtigsten internationalen Fachmessen für die Solarwirtschaft. Hier informieren sich Hersteller, Händler und Dienstleister über neue Entwicklungen. In Halle A2, Stand 574, stellt ein Team aus dem Helmholtz-Zentrum Berlin (HZB) seine Forschung im Bereich der Erneuerbaren Energien vor. Insbesondere präsentieren sich das neue Helmholtz-Innovation Lab HySPRINT und das bereits etablierte Kompetenzzentrum Photovoltaik, PVcomB . Die beiden Einrichtungen sind speziell auf wissenschaftlich-technische Fragestellungen des Technologietransfers ausgerichtet und arbeiten eng mit Partnern aus der Industrie zusammen.

Im Helmholtz Innovation Lab HySPRINT werden Materialien aus Silizium mit metallorganischen Perowskit-Kristallen kombiniert und zu so genannten hybriden Tandemzellen entwickelt. Sie können für die Strom-, aber auch für die solare Wasserstofferzeugung verwendet werden.

Am Kompetenzzentrum Photovoltaik PVcomB stehen industrienahe Produktionslinien für die CIGS- und die Silizium-Photovoltaik zur Verfügung. HZB-Expertenteams entwickeln zusammen mit der Industrie neuartige Dünnschichttechnologien und  -produkte. Gemeinsame Forschungsprojekte mit industriellen Partnern haben bereits zu einer Reihe erfolgreicher Innovationen geführt.

Die Forschung an neuen Materialsystemen für die Photovoltaik ist ein wichtiger Schwerpunkt am HZB. Das Zentrum ist spezialisiert auf sogenannte Energiematerialien, die Energie umwandeln oder speichern. Dazu zählen Solarzellen, Materialsysteme für die Erzeugung von Wasserstoff mit Sonnenlicht, aber auch magnetische Materialsysteme, die eine energieeffiziente IT-Technologie ermöglichen. Für die Untersuchung von Grenzflächen und Oberflächen von dünnen Schichten stehen am HZB die Photonenquelle BESSY II und eine Reihe von CoreLabs mit modernen Geräteparks zur Verfügung.
 
Der Infostand des HZB befindet sich in Halle A2, Stand 574 (A2.574)
 

arö


Das könnte Sie auch interessieren

  • Best Innovator Award 2023 für Artem Musiienko
    Nachricht
    22.03.2024
    Best Innovator Award 2023 für Artem Musiienko
    Dr. Artem Musiienko ist für seine bahnbrechende neue Methode zur Charakterisierung von Halbleitern mit einem besonderen Preis ausgezeichnet worden. Auf der Jahreskonferenz der Marie Curie Alumni Association (MCAA) in Mailand, Italien, wurde ihm der MCAA Award für die beste Innovation verliehen. Seit 2023 forscht Musiienko mit einem Postdoc-Stipendium der Marie-Sklodowska-Curie-Actions in der Abteilung von Antonio Abate, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP) am HZB.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.

  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart.