HZB-Publikation in der Festschrift des Journal of Physics D: Applied Physics

Ein Beispiel aus der Arbeit: Die „operando-Radiographie" (A)–(C) zeigt, wie sich beim Entladen und Laden einer Lithium-Schwefel-Zelle Schwefelverbindungen (schwarze Strukturen) auf der Kohlenstoff-Kathode (grau) ablagern.

Ein Beispiel aus der Arbeit: Die „operando-Radiographie" (A)–(C) zeigt, wie sich beim Entladen und Laden einer Lithium-Schwefel-Zelle Schwefelverbindungen (schwarze Strukturen) auf der Kohlenstoff-Kathode (grau) ablagern. © HZB

Das „Journal of Physics D: Applied Physics“ hat eine Arbeit zur Röntgentomographie an unterschiedlichen Batterietypen als Highlight für die Veröffentlichung in einem exklusiven Sonderband ausgewählt. An der Publikation waren zwei Gruppen am HZB und ein Team der Justus-Liebig-Universität Gießen beteiligt.


“Wir haben diese Arbeit wegen ihrer Neuigkeit, Relevanz und des breiten Anwendungsbereich ausgewählt“, schreibt der Chefredakteur Tom Miller. Die Arbeit ist nun zusätzlich in einem Sonderband (Special issue on Synchrotron- and FEL-based X-ray Methods for Battery Studies) zum 50-jährigen Bestehen des Journals publiziert. Tatsächlich zeigt der Beitrag, dass die Röntgentomographie sehr vielseitig anwendbar ist und für die Forschung an unterschiedlichen Batterietypen großen Erkenntniszuwachs verspricht. 

Die Röntgen-Computertomografie kombiniert Röntgenbilder zu dreidimensionalen Abbildungen. Diese zeigen, welche Prozesse im Innern von Materialien ablaufen. So lassen sich Transportprozesse und chemische Reaktionen in neuartigen Batteriesystemen untersuchen. Diese Prozesse sind bislang unzureichend verstanden, weswegen es schwierig ist, gezielt Verbesserungen zu erreichen.

In ihrem Beitrag stellen die Forscher nicht nur den Nutzen der Röntgentomographie für die Forschung an Batterien ganz allgemein vor, sondern sie präsentieren auch zahlreiche konkrete Beispiele für die Aussagekraft von tomographischen Abbildungen, zum Beispiel von Zink-Sauerstoff-Batterien, Natrium-Sauerstoff-Batterien und Metall-Schwefel-Batterien. Dabei zeigen sie, welche Prozesse die Speicherkapazität der Batterien jeweils begrenzen und warum die Leistungsfähigkeit mit der Anzahl der Ladezyklen abnimmt.  

Zur Publikation im Journal of Physics D: Applied Physics, Volume 49, Number 40 (2016): „In operando x-ray tomography for next-generation batteries: a systematic approach to monitor reaction product distribution and transport processes“
D. Schroder, C. L. Bender, T. Arlt, M. Osenberg, A. Hilger, S. Risse, M. Ballauff, I. Manke and J. Janek

DOI:10.1088/0022-3727/49/40/404001

arö


Das könnte Sie auch interessieren

  • Zusammenarbeit mit Korea Institute of Energy Research
    Nachricht
    23.04.2024
    Zusammenarbeit mit Korea Institute of Energy Research
    Am Freitag, den 19. April 2024, haben der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin, Bernd Rech, und der Präsident des Korea Institute of Energy Research (KIER), Yi Chang-Keun, in Daejeon (Südkorea) ein Memorandum of Understanding (MOU) unterzeichnet.
  • Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Nachricht
    19.04.2024
    Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Das Verbrennen von Biomasse beim Kochen belastet Gesundheit und Umwelt. Die deutsch-südafrikanische Initiative GreenQUEST entwickelt einen sauberen Haushaltsbrennstoff. Er soll klimaschädliche CO2-Emissionen reduzieren und den Zugang zu Energie für Haushalte in afrikanischen Ländern südlich der Sahara verbessern.

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.