New at Campus Wannsee: CoreLab Quantum Materials

This optical zone melting furnace is producing large single crystals.

This optical zone melting furnace is producing large single crystals. © M. Setzpfandt/HZB

A Laue apparatus is used for precise alignment of the crystals.

A Laue apparatus is used for precise alignment of the crystals. © M. Setzpfandt/HZB

Phase transitions can be detetcted by measuring transport properties of the sample.

Phase transitions can be detetcted by measuring transport properties of the sample. © M. Setzpfandt/HZB

Helmholtz-Zentrum Berlin has expanded its series of CoreLabs for energy materials research. In addition to the five established CoreLabs, it has now set up a CoreLab for Quantum Materials. A research team from the HZB Institute for Quantum Phenomena in New Materials is responsible for the CoreLab and its modern equipment. The CoreLab is also open to experimenters from other research institutes. 

Quantum phenomena are typically easiest to observe within perfect single crystals at very low temperatures. A team led by Prof. Dr. Bella Lake and Dr. Konrad Siemensmeyer has set up a dedicated CoreLab for Quantum Materials for producing and experimenting with such single crystals in the laboratory, or for preparing them for measurements at the neutron source BER II or the synchrotron light source BESSY II. External researchers are also welcome to use this CoreLab and benefit from the expertise of the HZB team.

Growth and preparation of single crystals

In many cases, the materials of interest are initially produced as microcrystalline powders and not as single crystals. Even the process of synthesising these powders is often difficult. It is therefore a key topic at this HZB CoreLab. In a powerful optical zone melting furnace, powder samples can be regrown as larger single crystals, which yield far more meaningful experimental results. Growing single crystals from powder samples requires a great deal of experience, which HZB possesses. A Laue apparatus is used for precise alignment of the crystals. Next, the crystals are cut in orientation with a wire saw or their surfaces polished in preparation for further experiments. The methods are highly flexible and suitable for all possible experiments. Samples are easily prepared here for experiments at the neutron source, at BESSY II, or in the lab. Less experienced users are closely supervised to ensure the success of their experiments. 

Transport properties and phase transitions

Another room provides high magnetic fields, low temperatures with two “Physical Property Measurement Systems” and a sensitive SQUID magnetometer. These allow the measurement of transport properties such as thermal conductivity, magnetisation and specific heats of materials. Measuring these properties renders so-called phase transitions visible. These phase transitions have a correlation with quantum physical laws and indicate the formation of new structures within the material.

CoreLabs for users in academia and industry

As an operator of large facilities, HZB has great experience in organising external user operation. HZB is now also introducing this experience into the operation of its CoreLabs, which are equipped with latest generation, and sometimes unique, instruments and equipment for analysing and synthesising energy materials. International experimental guests and partners from industry are equally welcome here.

 

arö


You might also be interested in

  • Fertilisation under the X-ray beam
    Science Highlight
    19.03.2024
    Fertilisation under the X-ray beam
    After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF. 
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.