Keywords: cooperations (143) user research (31) BESSY II (269) materials research (69) spintronics (93) quantum materials (29) HZB own research (101)

News    19.06.2017

New at Campus Wannsee: CoreLab Quantum Materials

This optical zone melting furnace is producing large single crystals.
Copyright: M. Setzpfandt/HZB

A Laue apparatus is used for precise alignment of the crystals.
Copyright: M. Setzpfandt/HZB

Phase transitions can be detetcted by measuring transport properties of the sample.
Copyright: M. Setzpfandt/HZB

Helmholtz-Zentrum Berlin has expanded its series of CoreLabs for energy materials research. In addition to the five established CoreLabs, it has now set up a CoreLab for Quantum Materials. A research team from the HZB Institute for Quantum Phenomena in New Materials is responsible for the CoreLab and its modern equipment. The CoreLab is also open to experimenters from other research institutes. 

Quantum phenomena are typically easiest to observe within perfect single crystals at very low temperatures. A team led by Prof. Dr. Bella Lake and Dr. Konrad Siemensmeyer has set up a dedicated CoreLab for Quantum Materials for producing and experimenting with such single crystals in the laboratory, or for preparing them for measurements at the neutron source BER II or the synchrotron light source BESSY II. External researchers are also welcome to use this CoreLab and benefit from the expertise of the HZB team.

Growth and preparation of single crystals

In many cases, the materials of interest are initially produced as microcrystalline powders and not as single crystals. Even the process of synthesising these powders is often difficult. It is therefore a key topic at this HZB CoreLab. In a powerful optical zone melting furnace, powder samples can be regrown as larger single crystals, which yield far more meaningful experimental results. Growing single crystals from powder samples requires a great deal of experience, which HZB possesses. A Laue apparatus is used for precise alignment of the crystals. Next, the crystals are cut in orientation with a wire saw or their surfaces polished in preparation for further experiments. The methods are highly flexible and suitable for all possible experiments. Samples are easily prepared here for experiments at the neutron source, at BESSY II, or in the lab. Less experienced users are closely supervised to ensure the success of their experiments. 

Transport properties and phase transitions

Another room provides high magnetic fields, low temperatures with two “Physical Property Measurement Systems” and a sensitive SQUID magnetometer. These allow the measurement of transport properties such as thermal conductivity, magnetisation and specific heats of materials. Measuring these properties renders so-called phase transitions visible. These phase transitions have a correlation with quantum physical laws and indicate the formation of new structures within the material.

CoreLabs for users in academia and industry

As an operator of large facilities, HZB has great experience in organising external user operation. HZB is now also introducing this experience into the operation of its CoreLabs, which are equipped with latest generation, and sometimes unique, instruments and equipment for analysing and synthesising energy materials. International experimental guests and partners from industry are equally welcome here.




You might also be interested in
  • NEWS      05.06.2019

    Photovoltaics are growing faster than expected in the global energy system

    Dramatic cost reductions and the rapid expansion of production capacities make photovoltaics one of the most attractive technologies for a global energy turnaround. Not only the electricity sector, but also transport, heating, industry and chemical processes will in future be supplied primarily by solar power, because it is already the cheapest form of electricity generation in large parts of the world. This is where opportunities and challenges lie - at the level of the energy system as well as for research and industry. Leading international photovoltaic researchers from the Global Alliance for Solar Energy Research Institutes describe the cornerstones of future developments in an article published in the journal "Science" on 31 May. [...]

  • <p>The illustration is alluding to the laser experiment in the background and shows the structure of TGCN.</p>SCIENCE HIGHLIGHT      05.06.2019

    Organic electronics: a new semiconductor in the carbon-nitride family

    Teams from Humboldt-Universität and the Helmholtz-Zentrum Berlin have explored a new material in the carbon-nitride family. Triazine-based graphitic carbon nitride (TGCN) is a semiconductor that should be highly suitable for applications in optoelectronics. Its structure is two-dimensional and reminiscent of graphene. Unlike graphene, however, the conductivity in the direction perpendicular to its 2D planes is 65 times higher than along the planes themselves. [...]

  • NEWS      04.06.2019

    Federal Ministry of Education and Research supports the development of a miniaturised EPR spectrometer

    Several research institutions are developing a miniaturized electron paramagnetic resonance (EPR) device with industrial partner Bruker to investigate semiconductor materials, solar cells, catalysts and electrodes for fuel cells and batteries. The Federal Ministry of Education and Research (BMBF) is funding the "EPR-on-a-Chip" or EPRoC project with 6.7 million euros. On June 3, 2019, the kick-off meeting took place at the Helmholtz-Zentrum Berlin. [...]