Keywords: energy (310) solar energy (245) solar fuels (75)

Science Highlight    28.08.2017

Solar hydrogen production by artificial leafs:


Copyright: HZB

Scientists analysed how a special treatment improves cheap metal oxide photoelectrodes

Metal oxides are promising candidates for cheap and stable photoelectrodes for solar water splitting, producing hydrogen with sunlight. Unfortunately, metal oxides are not highly efficient in this job. A known remedy is a treatment with heat and hydrogen. An international collaboration has now discovered why this treatment works so well, paving the way to more efficient and cheap devices for solar hydrogen production.

The fossil fuel age is bound to end, for several strong reasons. As an alternative to fossil fuels, hydrogen seems very attractive. The gas has a huge energy density, it can be stored or processed further, e. g. to methane, or directly provide clean electricity via a fuel cell. If it is produced using sunlight alone, hydrogen is completely renewable with zero carbon emissions.

Artificial leafs

Similar to a process in natural photosynthesis, sunlight can also be used in “artificial leafs” to split water into oxygen and hydrogen. Artificial leafs combine photoactive semiconducting materials and can reach efficiencies beyond 15 %.  However, those record efficiencies were obtained using expensive systems, which also tend to decompose in aqueous solutions. For successful commercialization costs need to go down and stability needs to increase.

Good candidates with one disadvantage

Complex metal oxide semiconductors are good candidates for artificial leafs since they are relatively cheap and stable in aqueous solutions. Scientists from HZB-Institute for Solar Fuels focus their research on these materials. Until now, photoelectrodes based on metal oxides have shown moderate efficiencies (only < 8 %). One reason is their poor charge carrier (electron and/or hole) mobility, which is up to 100.000 times lower than in classical semiconductors such as gallium arsenide or silicon. “What is worse is the fact that charge carriers in metal oxides often have really short life spans of nanoseconds or even picoseconds. Many of them disappear before they can contribute to water splitting”, Dr. Fatwa Abdi, expert at HZB-Institute for Solar Fuels points out.

Heat treatment with hydrogen

One option to overcome this limitation is a heat treatment under hydrogen atmosphere of the metal oxide layers after deposition. Fatwa Abdi and his colleagues have now investigated how this treatment influences life spans, transport properties and defects in one of the most promising metal oxide photoelectrodes, bismuth vanadate (BiVO4).

Life spans of charge carriers doubled

Time-resolved conductivity measurements revealed that electrons and holes live more than twice as long in the bulk of the hydrogen-treated BiVO4 as compared to the pristine BiVO4. As a result, the overall photocurrent under sunlight is largely improved. Further measurements at Dresden and theoretical calculations by KAUST-colleagues in Saudi Arabia provided evidence that the presence of hydrogen in the metal oxide reduces or deactivates point defects in the bulk of BiVO4. “Our results show that hydrogen treatment leads to less traps for charge carriers and less opportunities to recombine or getting lost. So more charge carriers survive for longer and may contribute to water splitting”, Abdi explains.  

The results have been published in Advanced Energy Materials (August, 25th 2017): Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment (DOI: 10.1002/aenm.201701536)

Ji-Wook Jang, Dennis Friedrich, Sönke Müller, Marlene Lamers, Hannes Hempel, Sheikha Lardhi, Zhen Cao, Moussab Harb, Luigi Cavallo, René Heller, Rainer Eichberger, Roel van de Krol, and Fatwa F. Abdi*

arö


           



You might also be interested in
  • <p>HZB-Teams are exploring and developing new technologies for perovskite based solar cells in the innovation lab HySPRINT.</p>NEWS      16.05.2019

    LAUNCH OF EPKI: European Perovskite Initiative for the development of Perovskite based solar technology

    Perovskite based solar cells have made tremendous progress over the last decade achieving lab-scale efficiencies of 24.2% early 2019 in single-junction architecture and up to 28% in tandem (perovskite associated with crystalline silicon), turning it into the fastest-advancing solar technology to date. With the HySPRINT project and the recruitment of highly talented young scientists, Helmholtz-Zentrum Berlin has built up a considerable research capacity in the field of perovskite materials in recent years and is participating in the European Perovskite Initiative EPKI that has now been launched. [...]


  • NEWS      15.05.2019

    The HZB at INTERSOLAR in Munich

    The Helmholtz-Zentrum Berlin (HZB) will present itself from 15 to 17 May at INTERSOLAR in Munich, the world's largest solar trade fair. The HZB is one of the world's leading research centres in the field of solar energy and presents the latest developments in photovoltaics and solar fuels. The HZB offers a wide range of cooperation opportunities for companies - from contract research to joint research projects. [...]


  • NEWS      14.05.2019

    Bernd Stannowski is Professor at the Beuth University of Applied Sciences Berlin

    Prof. Dr. Bernd Stannowski has received and accepted a call for a joint S-Professorship for "Photovoltaics" at the Beuth University of Applied Sciences Berlin. The physicist heads the working group "Silicon Photovoltaics" at the Competence Center Thin Film and Nanotechnology for Photovoltaics Berlin (PVcomB) of the HZB. [...]




Newsletter