Topologische Isolatoren: Neuer Phasenübergang entdeckt

Der Bismut-Anteil nimmt von 0% (links) auf 2,2% (rechts) zu. Dadurch entsteht eine so genannte Bandl&uuml;cke in den Energieniveaus der Elektronen, zeigen die Messungen an BESSY II. </p>
<p>

Der Bismut-Anteil nimmt von 0% (links) auf 2,2% (rechts) zu. Dadurch entsteht eine so genannte Bandlücke in den Energieniveaus der Elektronen, zeigen die Messungen an BESSY II.

© HZB

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen und spannenden Materialklasse zählen auch Halbleiter aus Blei, Zinn und Selen, die zusätzlich mit winzigen Mengen Bismut versetzt sind. Das HZB-Team untersuchte einkristalline Schichten mit dieser Zusammensetzung und variierte dabei die Dotierung mit dem Element Bismut. Bei einer Dotierung mit 1 bis 2 Prozent Bismut konnten sie einen neuartigen topologischen Phasenübergang beobachten. Die Proben wechseln zu einer bestimmten topologischen Phase, die zusätzlich die Eigenschaft der Ferroelektrizität besitzt. Das bedeutet, dass ein äußeres elektrisches Feld das Kristallgitter verformt, während umgekehrt mechanischer Druck auf den Kristall elektrische Felder erzeugt.

Dieser Effekt ist für Anwendungen interessant. Solche ferroelektrischen Phasenwechselmaterialien werden beispielsweise in DVDs und Flash-Speichern verwendet. Dort verschiebt eine angelegte elektrische Spannung Atome im Kristallgitter, was aus einem Isolator ein Metall macht.

„Die Dotierung mit Bismut, die wir in der PbSnSe-Schicht untersucht haben, wirkt offenbar als Störung. Bismut ist dafür bekannt, dass seine Elektronenzahl nicht gut zu einer Kristallstruktur wie der von PbSnSe passt, so dass dieser faszinierende Phasenübergang auftritt“, erklärt Dr. Jaime Sánchez-Barriga, der für das Projekt zuständige Forscher.

Nach detaillierten Auswertungen der Messungen blieb nur eine Schlussfolgerung übrig: die Dotierung mit Bismut führt offenbar zu einer ferroelektrischen Verzerrung des Kristallgitters, die auch die erlaubten Energieniveaus der Elektronen ändert. "Die Messergebnisse haben uns über mehrere Experimentierreihen Rätsel aufgegeben, bis sich die Ergebnisse schließlich an einem ganz neuen Satz von Proben perfekt reproduzieren ließen", fügt Sánchez-Barriga hinzu.

"Ferroelektrische Phasen könnten hier zu Anwendungen führen, an die bislang nicht zu denken war. Verlustfreie elektrische Leitung in topologischen Materialien könnte sich nach Belieben an- und ausschalten lassen, durch Spannungspulse oder auch mechanische Spannungen", erklärt Prof. Oliver Rader, der am HZB die Abteilung Materialien für grüne Spintronik leitet.

Publication in Nature communications (2017): Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
Partha S. Mandal, Gunther Springholz, Valentine V. Volobuev, Ondrei Caha, Andrei Varykhalov, Evangelos Golias, Günther Bauer, Oliver Rader, Jaime Sánchez-Barriga

doi: 10.1038/s41467-017-01204-0

Hinweis: Die Untersuchungen wurden in enger Zusammenarbeit mit Forschern der Johannes-Kepler-Universität Linz durchgeführt, die auch die Proben hergestellt haben. Partha S. Mandal, der seine Doktorarbeit über die Messungen schreibt, wurde vom Helmholtz Virtual Institute "New States of Matter and their Excitations" finanziert.

 

arö


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.