Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Ab einem Magnetfeld von 23 Tesla erscheinen zusätzliche Flecken auf dem Neutronendetektor, die etwas über die neue magnetische Ordnung im Kristall verraten.

Ab einem Magnetfeld von 23 Tesla erscheinen zusätzliche Flecken auf dem Neutronendetektor, die etwas über die neue magnetische Ordnung im Kristall verraten. © HZB

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert.  Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das ist nicht der Fall,  im Gegenteil. Bei tiefen Temperaturen unterhalb von 17,5 Kelvin entsteht eine neue innere Ordnung: Etwas in der kristallinen Geometrie ordnet sich neu, was zur Abgabe einer gewissen Wärmemenge führt, die wie ein Fingerabdruck auf die neue Ordnung hinweist, ohne mehr über ihre Natur zu verraten. Bekannt war nur, dass es sich nicht um eine Ordnung mit statischen magnetischen Momenten handelt. Mehr als 1000 Publikationen sind bereits über dieses Thema erschienen, ohne den Schleier zu lüften.

Perfekte Kristalle bei tiefen Temperaturen untersucht

Dennoch lassen sich magnetische Ordnungen auf verschiedene Weise in solchen Proben erzeugen, zum Beispiel durch Dotieren mit Fremdelementen, Druck oder sehr hohen Magnetfeldern. Dies könnte helfen, mehr Licht auf den unbekannten Ordnungszustand zu werfen. Um zumindest diejenigen magnetischen Ordnungen zu untersuchen, die auf der versteckten Ordnung basieren und sich mit extremen Magnetfeldern hervorrufen lassen, haben Physiker aus dem HZB, dem HZDR und den Universitäten in Leiden und Amsterdam, Niederlande, perfekte Kristalle aus U(Ru0.92 Rh0.08)2Si2 bei tiefen Temperaturen und extrem hohen Feldern mit Neutronen untersucht.

Phasenübergang bei 21,6 Tesla: eine neue magnetische Ordnung setzt sich durch

„Die Neutronenstreuexperimente unter extrem hohen Magnetfeldern haben gezeigt, dass es bei etwa 21,6 Tesla wirklich einen neuen magnetischen Phasenübergang gibt“, erklärt Erstautor Dr. Karel Prokeš aus dem HZB. „Das bedeutet, dass sich im Kristall eine neue magnetische Ordnung durchsetzt“. Dabei handelt es sich um eine unkompensierte antiferromagnetische Ordnung, in der die magnetischen Momente der Uran-Atome abwechselnd im Muster up-up-down in entgegengesetzte Richtungen zeigen.

Geschwindigkeitsrekord bei der Publikation

Als Prokeš das gemeinsame Manuskript bei der renommierten Phys.RevB einreichte, erhielt er innerhalb von 19 Minuten eine positive Antwort: Die Arbeit wurde als „Rapid Communication“ publiziert – ein Geschwindigkeitsrekord, der etwas über die Bedeutung dieses Experiments für die Festkörperphysik aussagt.

 

Zur Publikation: Physical Review B (2017): Magnetic structure in a U(Ru0.92Rh0.08)2Si2 single crystal studied by neutron diffraction in static magnetic fields up to 24 T. K. Prokeš, M. Bartkowiak, O. Rivin, O. Prokhnenko, T. Förster, S. Gerischer, R. Wahle, Y.-K. Huang, and J. A. Mydosh

Doi: 10.1103/PhysRevB.96.121117

 

 

arö


Das könnte Sie auch interessieren

  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Spintronik: Röntgenmikroskopie an BESSY II kann Domänenwände unterscheiden
    Science Highlight
    28.08.2023
    Spintronik: Röntgenmikroskopie an BESSY II kann Domänenwände unterscheiden
    Magnetische Skyrmionen sind winzige Wirbel aus magnetischen Spin-Texturen. Im Prinzip könnten Materialien mit Skyrmionen als spintronische Bauelemente verwendet werden, zum Beispiel als sehr schnelle und energieeffiziente Datenspeicher. Doch im Moment ist es noch schwierig, Skyrmionen bei Raumtemperatur zu kontrollieren und zu manipulieren. Eine neue Studie an BESSY II analysiert nun die Bildung von Skyrmionen in einem besonders interessanten Material in Echtzeit und mit hoher räumlicher Auflösung: Es handelt sich um ferrimagnetische Dünnschichten aus Dysprosium und Kobalt. Die Ergebnisse zeigen, dass es möglich ist, den Skyrmionentyp klar zu bestimmen.
  • Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten
    Science Highlight
    02.06.2023
    Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten
    Magnetische Domänenwände sorgen für elektrischen Widerstand, da es für Elektronenspins schwierig ist, ihrer magnetischen Struktur zu folgen. Dieses Phänomen könnte in spintronischen Bauelementen genutzt werden, bei denen der elektrische Widerstand je nach Vorhandensein oder Fehlen einer Domänenwand variieren kann. Eine besonders interessante Materialklasse sind Halbmetalle wie La2/3Sr1/3MnO3 (LSMO). Sie weisen vollständige Spinpolarisation auf. Allerdings war der Widerstand einer einzelnen Domänenwand in Halbmetallen bisher noch nicht bestimmt worden. Nun hat ein Team aus Spanien, Frankreich und Deutschland eine einzelne Domänenwand auf einem LSMO-Nanodraht erzeugt und Widerstandsänderungen gemessen, die 20mal größer sind als bei normalen Ferromagneten wie Kobalt.