Bewilligt! EU-Projekt INFINITE-CELL

Im November 2017 startet ein großes EU-Forschungsprojekt zu Tandemsolarzellen, an dem auch das HZB beteiligt ist. Ziel ist es, Halbleiter-Dünnschichten aus Silizium und Kesteriten zu besonders preiswerten Tandemzellen mit Wirkungsgraden von über 20 Prozent zu kombinieren. An dem Projekt arbeiten mehrere große Forschungseinrichtungen aus Europa, Marokko, Südafrika und Weißrußland und zwei Industriepartner.

„Wir haben nicht nur eingehende Erfahrungen mit Kesteriten, sondern verfügen auch über ein großes Spektrum an Analyse-Methoden, um Absorbermaterialien sehr gründlich zu charakterisieren“, erklärt Prof. Dr. Susan Schorr. Das Gesamt-Projekt wird von der FUNDACIO INSTITUT DE RECERCA DE L'ENERGIA DE CATALUNYA (IREC), Spanien, einem langjährigen Kooperationspartner des HZB, koordiniert. Mit einem Kick-off-Workshop in Brüssel im November 2017 startet das Projekt.

Konkrete Ziele

Dabei gibt es konkrete Ziele: So sollen Kesterit-Solarzellen Wirkungsgrade von mehr als 14 Prozent erreichen (aktuell knapp 12 Prozent), Dünnschichtsiliziumzellen aus recyceltem Material noch Wirkungsgrade von über 16 Prozent. Dabei nutzt Silizium einen anderen Energiebereich des Lichts, um Strom zu erzeugen, als Kesterit. Kombiniert man beide Materialien zu einer Tandemsolarzelle, indem man sie aufeinanderstapelt oder sogar aufeinander aufwachsen lässt, dann lässt sich ein deutlich größerer Anteil der Sonnenenergie in elektrische Energie umwandeln. Solche besonders effizienten, dabei aber auch preiswerten Solarmodule könnten in Fassaden, Dachflächen oder Fahrzeugdächern eingesetzt werden und dezentral Strom erzeugen.

Vorteile von Kesteriten

“Kesterite sind eine sehr interessante Materialklasse” betont Susan Schorr. Denn auch wenn andere Absorbermaterialien wie CIGS oder die metallorganischen Perowskit-Halbleiter heute deutlich höhere Wirkungsgrade erreichen, können Kesterite mit zwei großen Vorteilen trumpfen: Sie bestehen aus reichlich vorhandenen Elementen und sind ungiftig.

Fördermittel für den Austausch

Die Laufzeit des Projektes beträgt vier Jahre. Es handelt sich um ein Research and Innovation Staff Exchange (RISE) Projekt, das zu den EU-geförderten „Marie Skłodowska-Curie Actions“ gehört. Damit können Wissenschaftlerinnen und Wissenschaftler in den nächsten Jahren zu Partnereinrichtungen reisen, um sich über ihre Ergebnisse auszutauschen. Diese gemeinsame Forschung ist in einem detaillierten „Secondment“-Plan festgehalten.

arö


Das könnte Sie auch interessieren

  • Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Nachricht
    19.04.2024
    Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Das Verbrennen von Biomasse beim Kochen belastet Gesundheit und Umwelt. Die deutsch-südafrikanische Initiative GreenQUEST entwickelt einen sauberen Haushaltsbrennstoff. Er soll klimaschädliche CO2-Emissionen reduzieren und den Zugang zu Energie für Haushalte in afrikanischen Ländern südlich der Sahara verbessern.

  • Quantsol Summer School 2024 - jetzt bewerben!
    Nachricht
    17.04.2024
    Quantsol Summer School 2024 - jetzt bewerben!
    Vom 1. bis 8. September informiert die Quantsol Summer School 2024 über Grundlagen der solaren Energieumwandlung.

    Die International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) findet im September 2024 in Hirschegg, Kleinwalsertal, Österreich statt. Bewerbungen können bis zum 31. Mai 2024, 23:59 Uhr MEZ eingereicht werden. Organisiert wird die Schule vom Helmholtz-Zentrum Berlin und der Technischen Universität Ilmenau.

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.