Neues Röntgenspektrometer ermöglicht es, Einzelschritte der Photosynthese zu beobachten

Schema des Photosystems II.

Schema des Photosystems II. © SLAC

HZB Wissenschaftler haben an BESSY II ein neuartiges Spektrometer entwickelt, das detaillierte Einblicke in Katalyse-Prozesse an Metall-Enzymen ermöglicht. In internationaler Zusammenarbeit gelang es ihnen, einzelne Prozesse im Photosystem II aufzuklären. Ihre Studie haben sie nun in der Zeitschrift Structural Dynamics veröffentlicht. Das Photosystem II gehört zur Photosynthese, die u.a. in Pflanzen und Algen stattfindet und Sonnenenergie in chemische Energie umwandelt.

Das Photosystem II ist ein großer Proteinkomplex, in dessen Zentrum vier Mangan-Atome und ein Calcium-Atom sitzen. Sonnenlicht setzt in diesem Proteinkomplex einen Prozess in Gang, der  Wasser in Sauerstoff, Protonen und Elektronen aufspaltet, mit deren Hilfe wiederum die für das Leben auf der Erde essentiellen Kohlehydrate erzeugt werden.

Eine der großen Herausforderungen bei der Aufklärung dieses Prozesses ist es, die einzelnen Zwischenschritte experimentell zu beobachten. Bislang war es insbesondere nicht möglich, Röntgenspektroskopie an Photosystem II im für BESSY II charakteristischen Energiebereich der sogenannten weichen Röntgenstrahlung durchzuführen. Denn die erwarteten Signale sind sehr klein und biologische Proben sind sehr empfindlich für Strahlenschäden. „Bisher war es nicht möglich, die Mangan-Atome experimentell "abzutasten"“, erklärt Dr. Philippe Wernet vom HZB.

Nun konnte eine internationale Kooperation mit dem HZB und mit führenden Gruppen der Photosystem II Forschung um Junko Yano in Berkeley, USA, und anderen in den USA, Schweden und Frankreich am Freien Elektronenlaser LCLS in Stanford, USA, einen deutlichen Fortschritt erreichen.

Spektrometer aus dem HZB

Dafür setzten sie ein neuartiges Spektrometer ein, das am HZB entwickelt und getestet wurde. Es enthält eine ebenfalls am HZB entwickelte Reflexionszonenplatte als „Linse“ für das Röntgenlicht. Damit war es erstmals möglich, organische Metall-Enzyme bei ihren geringen Konzentrationen in Lösung, also in ihrer natürlichen Umgebung, mit weicher Röntgenstrahlung zu untersuchen.

Zwei Zwischenschritte bei der Wasserspaltung

Insbesondere interessierten sich die Forschungsteams dafür, wie sich die elektronische Struktur der Mangan-Atome verändert, die im Zentrum des Enzyms sitzen. Denn darüber lassen sich die Zwischenschritte bis zur Wasserspaltung gut identifizieren. Tatsächlich konnten sie zeigen, dass die neue Methode geeignet ist, die Mangan-Atome im Photosystem II direkt abzutasten. Damit konnten sie bereits zwei Zwischenschritte dingfest machen.

„Mit unserer Methode können wir genau untersuchen, wie die Natur es anstellt, u.a. in Blättern oder Algen so erfolgreich Sonnenenergie in chemische Energie umzuwandeln“, sagt Markus Kubin, HZB, Erstautor der Studie, die im September in der Zeitschrift Structural Dynamics veröffentlicht wurde.

Spektrometer auch für andere Katalysatorkomplexe geeignet

Mit dem neu entwickelten Spektrometer lassen sich auch andere empfindliche Katalysatorkomplexe in biologischen oder technischen Systemen untersuchen.

 

Zur Publikation in Structural Dynamics 4, 054307 (2017);Soft X-ray Absorption Spectroscopy of Metalloproteins and High-Valent Metal-Complexes at Room Temperature Using Free-Electron Lasers; Markus Kubin, Jan Kern, Sheraz Gul, Thomas Kroll, Ruchira Chatterjee, Heike Löchel, Franklin D. Fuller, Raymond G. Sierra, Wilson Quevedo, Christian Weniger, Jens Rehanek, Anatoly Firsov, Hartawan Laksmono, Clemens Weninger, Roberto Alonso-Mori, Dennis L. Nordlund, Benedikt Lassalle-Kaiser, James M. Glownia, Jacek Krzywinski, Stefan Moellerc, Joshua J. Turnerc, Michael P. Minittic, Georgi L. Dakovskic, Sergey Koroidovf,h, Anurag Kawdeh, Jacob S. Kanady, Emily Y. Tsui, Sandy Suseno, Zhiji Han, Ethan Hill, Taketo Taguchi, Andrew S. Borovik, Theodor Agapie, Johannes Messinger, Alexei Erko, Alexander Föhlisch, Uwe Bergmann, Rolf Mitzner, Vittal K. Yachandra, Junko Yano, Philippe Wernet

doi: 10.1063/1.4986627

 

red./arö


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.

  • HZB-Forscher Robert Seidel erhält ERC-Consolidator Grant für WATER-X
    Nachricht
    04.03.2024
    HZB-Forscher Robert Seidel erhält ERC-Consolidator Grant für WATER-X
    Der Physiker Dr. Robert Seidel hat einen Consolidator Grant des European Research Council (ERC) eingeworben. In den kommenden fünf Jahren erhält er damit Fördermittel von insgesamt zwei Millionen Euro für sein Forschungsvorhaben WATER-X. Seidel will mit modernsten Röntgenmethoden an BESSY II Nanopartikel in wässriger Lösung untersuchen, die als Katalysatoren bei der photokatalytischen Produktion von „grünem“ Wasserstoff eingesetzt werden.