Oxford PV collaborates with HZB to move perovskite solar cells closer to commercialisation

Oxford PV – The Perovskite Company's industrial site in Brandenburg an der Havel, Germany where the company is working rapidly to transfer its advanced perovskite on silicon tandem solar cell technology to an industrial scale process.

Oxford PV – The Perovskite Company's industrial site in Brandenburg an der Havel, Germany where the company is working rapidly to transfer its advanced perovskite on silicon tandem solar cell technology to an industrial scale process. © Oxford PV

Perovskite solar technology leader Oxford PV collaborates with leading German research centre to support the accelerated transfer of its technology into silicon cell manufacturing lines.

Oxford PVTM – The Perovskite CompanyTM, the leader in the field of perovskite solar cells, today announced its collaboration with Helmholtz-Zentrum Berlin (HZB), the leading German research centre focused on energy materials research.

Oxford PV has made considerable progress in transferring its advanced perovskite on silicon tandem solar cell technology from its laboratory in Oxford, UK to an industrial scale process at its site in Brandenburg an der Havel, Germany.

HZB’s extensive expertise in silicon heterojunctions solar cell technology, will support Oxford PV to further optimise its perovskite on silicon tandem solar cell technology, and demonstrate production scale up, to ensure ease of integration into large scale silicon solar cell and module production.

“Working with HZB to understand solar cell manufacturers’ silicon cells, will allow Oxford PV’s perovskite on silicon tandem formation to be fully optimised, to ensure the most efficient tandem solar cell, and the easy transfer of our technology into our commercial partner’s industrial processes, commented Chris Case, Chief Technology Officer, at Oxford PV,

“Oxford PV is now in the final stage of commercialising its perovskite photovoltaic solution, which has the potential to enable efficiency gains that will transform the economics of silicon photovoltaic technology globally.”

Rutger Schlatmann, Director of the PVcomB institute at HZB, said, “HZB believe that perovskites present a significant opportunity to the future of photovoltaics. For this reason, at our new innovation lab - HySPRINT, we have significantly increased our expertise and attracted some of the most promising young scientists in this field. HZB’s collaboration with Oxford PV is strategically important to the institute, as Oxford PV is the ideal partner to further develop our solar cell technology knowledge and help support the commercialisation of tandem silicon perovskite photovoltaic cells.”

More Information:

  • Oxford PV
  • PVcomB
  • HySPRINT-a Helmholtz Innovation Lab

Oxford PV/HZB


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • Cooperation with the Korea Institute of Energy Research
    News
    23.04.2024
    Cooperation with the Korea Institute of Energy Research
    On Friday, 19 April 2024, the Scientific Director of Helmholtz-Zentrum Berlin, Bernd Rech, and the President of the Korea Institute of Energy Research (KIER), Yi Chang-Keun, signed a Memorandum of Understanding (MOU) in Daejeon (South Korea).
  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.