Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten

Rasterelektronenmikroskopien der Perowskit-Solarzellen, links mit glatter, rechts mit mesopor&ouml;ser Grenzschicht. Zur Verdeutlichung wurden die Bilder halbseitig eingef&auml;rbt: Metalloxid (t&uuml;rkis), Grenzschicht (rot), Perowskit (braun), lochleitende Schicht (dunkelblau) sowie Goldkontakt. Die Skala zeigt 200 nm. </p>
<p>

Rasterelektronenmikroskopien der Perowskit-Solarzellen, links mit glatter, rechts mit mesoporöser Grenzschicht. Zur Verdeutlichung wurden die Bilder halbseitig eingefärbt: Metalloxid (türkis), Grenzschicht (rot), Perowskit (braun), lochleitende Schicht (dunkelblau) sowie Goldkontakt. Die Skala zeigt 200 nm.

© A. Gagliardi/TUM

Für die Stabilität des Wirkungsgrads von Perowskit-Solarzellen spielt ihre innere Architektur eine entscheidende Rolle. Dies zeigten nun zwei Forscherteams von Helmholtz-Zentrum Berlin und der TU München. Sie kombinierten dafür ihre Experimente mit numerischen Simulationen.

In nur wenigen Jahren hat sich der Wirkungsgrad von Perowskit-Solarzellen von knapp drei auf über 20 Prozent steigern lassen. Dazu kommt, dass dieses Material preisgünstig ist und einfach verarbeitet werden kann. Deshalb gelten Perowskit-Dünnschichten als vielversprechender Kandidat für den weiteren Ausbau der Photovoltaik. Leider gibt es bislang noch einige Haken: So bleibt der Wirkungsgrad von Perowskit-Solarzellen unter  UV-Strahlung im Freien oder elektrischen Feldern, die beim Betrieb auftreten, nicht lange stabil. Nun haben Dr. Antonio Abate, Leiter einer Helmholtz-Nachwuchsgruppe am HZB, und Prof. Alessio Gagliardi, TU München, gezeigt, welchen Einfluss der Aufbau von Perowskit-Zellen auf die Stabilität des Wirkungsgrads hat. Ihre Ergebnisse sind im Fachjournal ACS Energy Letters publiziert.

Die Wissenschaftler untersuchten zwei unterschiedliche Architekturen von Perowskit-Solarzellen, die ansonsten auf identische Weise präpariert wurden. In beiden grenzt die Perowskit-Dünnschicht an eine elektronenleitende Schicht aus einem Metalloxid wie Titandioxid oder Zinndioxid. Während in der ersten Variante die beiden Schichten glatt aneinandergrenzen (planare Grenzschicht), bildet sich in der zweiten Variante eine mesoporöse Zwischenschicht aus Perowskit und Metalloxid aus, die eine komplexe, schwammartige Struktur mit vielen winzigen Poren besitzt. Überraschenderweise blieb der Wirkungsgrad von Zellen mit dieser mesoporösen Zwischenschicht weitaus länger stabil als in Zellen mit einer planaren Zwischenschicht.

Durch weitere Experimente und mit Hilfe numerischer Simulationen konnten die Forscher nun eine Begründung für diesen Effekt finden: „Die mesoporöse Zwischenschicht besitzt eine sehr große innere Oberfläche und das erweist sich als Vorteil“, erklärt Abate, der im Rahmen des Helmholtz Innovation Labs HySPRINT arbeitet. Denn dadurch verteilen sich etwaige Fehlstellen und Defekte, die den Wirkungsgrad mindern und sich während des Betriebs der Solarzelle anhäufen, sehr großflächig. Ihr Einfluss wird damit „verdünnt” und abgemildert, so dass der Wirkungsgrad stabil bleibt.

Die Wissenschaftler konnten sogar einen Schwellenwert für die Defektdichte bei den mesoporösen Perowskit-Zellen ermitteln. Oberhalb dieser Schwelle nimmt die Degradation der Zelle sehr rasch zu, ihre Stabilität sinkt rapide. Doch unterhalb der Schwelle bleibt der Wirkungsgrad der Zelle stabil. „Wir konnten zeigen, dass Perowskit-Zellen in einer mesoporösen  Architektur weitaus besser gegen den Einfluss von Defekten geschützt sind”, sagt Abate.

Die Studie ist publiziert in ACS Energy Lett., (2018): Mesoporous Electron-Selective Contacts Enhance the Tolerance to Interfacial Ion Accumulation in Perovskite Solar Cells, A. Abate & A. Gagliardi

DOI: 10.1021/acsenergylett.7b01101

arö


Das könnte Sie auch interessieren

  • Best Innovator Award 2023 für Artem Musiienko
    Nachricht
    22.03.2024
    Best Innovator Award 2023 für Artem Musiienko
    Dr. Artem Musiienko ist für seine bahnbrechende neue Methode zur Charakterisierung von Halbleitern mit einem besonderen Preis ausgezeichnet worden. Auf der Jahreskonferenz der Marie Curie Alumni Association (MCAA) in Mailand, Italien, wurde ihm der MCAA Award für die beste Innovation verliehen. Seit 2023 forscht Musiienko mit einem Postdoc-Stipendium der Marie-Sklodowska-Curie-Actions in der Abteilung von Antonio Abate, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP) am HZB.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.

  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart.