Kesterite solar cells: germanium promises better opto-electronic properties than tin

<p class="Default">The picture shows the typical arrangement of cations in a kesterite type structure. In the background the crystal structure is shown, a unit cell is highlighted.

The picture shows the typical arrangement of cations in a kesterite type structure. In the background the crystal structure is shown, a unit cell is highlighted. © HZB

Specific changes in the composition of kesterite-type semiconductors make it possible to improve their suitability as absorber layers in solar cells. As a team at the Helmholtz-Zentrum Berlin showed, this is particularly true for kesterites in which tin was replaced by germanium. The scientists examined the samples using neutron diffraction at BER II and other methods. The work was selected for the cover of the journal CrystEngComm.

Kesterites are semiconductor compounds made of the elements copper, tin, zinc, and selenium. These semiconductors can be used as an optical absorber material in solar cells, but so far have only achieved a maximum efficiency of 12.6 per cent, while solar cells made of copper-indium-gallium-selenide (CIGS) already attain efficiencies of over 20 percent. Nevertheless, kesterites are considered interesting alternatives to CIGS solar cells because they consist of common elements, so that no supply bottlenecks are to be expected. A team led by Professor Susan Schorr at the HZB has now investigated a series of non-stoichiometric kesterite samples and shed light on the relationship between composition and the opto-electronic properties. During the synthesis of the samples at the HZB, the tin atoms were replaced with germanium.

Neutron diffraction at BER II

The researchers then investigated these samples using neutron diffraction at BER II. Copper, zinc, and germanium can be distinguished from each other particularly well with this method, and their positions can be located in the crystal lattice. The result: kesterites with a slightly copper-poor and zinc-rich composition found in solar cells with the highest efficiencies also have the lowest concentration of point defects as well as the lowest disorder of copper-zinc. The more the composition was enriched with copper, the higher the concentration was of other point defects considered to be detrimental to the performance of solar cells. Further investigations showed how the energy band gap, as it is known, depends on the composition of the kesterite powder samples.

The effects of Germanium

 “This band gap is a characteristic of semiconductors and determines which frequencies of light release charge carriers within the material”, explains René Gunder, first author of the work. “We now know that germanium increases the optical band gap, allowing the material to convert a greater proportion of sunlight into electrical energy.”

Kesterites: Candidate for solar cells and photocatalysts

“We are convinced that these kinds of kesterites are not only suitable for solar cells, but can also be considered for other applications. Kesterites acting as photocatalysts might be able to split water into hydrogen and oxygen using sunlight, and to store solar energy in the form of chemical energy,” explains Schorr.

Published in CrystEngComm (2018): “Structural characterization of off-stoichiometric kesterite-type Cu2ZnGeSe4 compound semiconductors: From cation distribution to intrinsic point defect density”; R. Gunder, J. A. Márquez-Prieto, G. Gurieva, T. Unold and S. Schorr

DOI: 10. 1039/c7ce02090b

The last news on kesterite research was published in December 2017

arö


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • Cooperation with the Korea Institute of Energy Research
    News
    23.04.2024
    Cooperation with the Korea Institute of Energy Research
    On Friday, 19 April 2024, the Scientific Director of Helmholtz-Zentrum Berlin, Bernd Rech, and the President of the Korea Institute of Energy Research (KIER), Yi Chang-Keun, signed a Memorandum of Understanding (MOU) in Daejeon (South Korea).