Themen: Solarenergie (235) HZB-Eigenforschung (90)

Science Highlight    29.03.2018

Solarzellen aus Kesteriten: Germanium statt Zinn verspricht bessere optoelektronische Eigenschaften

Die Einblendung zeigt den typischen Aufbau eines Kristalls mit Kesteritstruktur, im Hintergrund sind die Kristallstruktur und die Elementarzelle angedeutet.
Copyright: HZB

Durch gezielte Veränderungen der Zusammensetzung von Kesterit-Halbleitern lässt sich ihre Eignung als Absorbermaterial in Solarzellen verbessern. Wie ein Team am Helmholtz-Zentrum Berlin zeigte, gilt dies besonders für Kesterite, in denen Zinn durch Germanium ersetzt wurde. Die Wissenschaftlerinnen und Wissenschaftler untersuchten die Proben mit Hilfe von Neutronenbeugung am BER II und weiteren Methoden. Die Arbeit wurde für das Titelblatt der Zeitschrift CrystEngComm ausgewählt.

Kesterite sind Halbleiterverbindungen aus den Elementen Kupfer, Zinn, Zink und Selen. Diese Halbleiter lassen sich als Absorbermaterial in Solarzellen nutzen, schaffen aber bisher nur Wirkungsgrade von maximal 12,6 Prozent, während Solarzellen aus Kupfer-Indium-Gallium-Selenid (CIGS) bereits über 20 Prozent erreichen. Dennoch gelten Kesterite als interessante Alternative zu CIGS-Solarzellen, weil sie aus häufig vorkommenden Elementen bestehen, so dass keine Engpässe zu erwarten sind. Ein Team um Professor Dr. Susan Schorr am HZB hat nun eine Reihe von „nicht-stöchiometrischen“ Kesterit-Proben untersucht und den Zusammenhang zwischen Zusammensetzung und optoelektronischen Eigenschaften beleuchtet. Bei der Synthese der Proben am HZB wurden die Zinn-Atome durch Germanium ersetzt.

Mit Neutronen Elemente klar unterscheiden

Diese Proben untersuchten die Forscher mit Neutronenbeugung am BER II. Denn mit dieser Methode lassen sich die Elemente Kupfer, Zink und Germanium besonders gut voneinander unterscheiden und ihre Positionen im Kristallgitter verorten. Die Diagnose: Kesterite mit einer leicht Kupfer-armen und Zink-reichen Zusammensetzung, wie sie auch in Solarzellen mit den höchsten Wirkungsgraden zu finden ist, weisen die geringste Konzentration an Punktdefekten sowie die niedrigste Kupfer-Zink-Unordnung auf. Je Kupfer-reicher die Zusammensetzung wird, desto mehr steigt die Konzentration von anderen Punktdefekten, die als eher abträglich für die Leistungsfähigkeit von Solarzellen gelten. Weitere Untersuchungen zeigten, wie die so genannte Energiebandlücke von der Zusammensetzung der Kesterit-Pulverproben abhängt.  

Germanium wirkt

 „Diese Bandlücke ist eine Eigenschaft der Halbleiter und bestimmt, welche Lichtfrequenzen im Material Ladungsträger freisetzen“, erklärt René Gunder, Erstautor der Arbeit.  „Wir wissen nun, dass Germanium die optische Bandlücke vergrößert und damit dem Material ermöglicht, einen größeren Anteil des Sonnenlichts in elektrische Energie umzuwandeln.“

Kesterite: Kandidaten für Solarzellen und Photokatalysatoren

„Wir sind davon überzeugt, dass solche Kesterite sich nicht nur für Solarzellen eignen, sondern auch für andere Anwendungen in Frage kommen: So könnten Kesterite als Photokatalysatoren mit Hilfe von Sonnenlicht Wasser in Wasserstoff und Sauerstoff aufspalten und Solarenergie in Form von chemischer Energie speichern“, führt Susan Schorr aus.  

 

Die Arbeit wurde in CrystEngComm (2018) publiziert: “Structural characterization of off-stoichiometric kesterite-type Cu2ZnGeSe4 compound semiconductors: From cation distribution to intrinsic point defect density”; R. Gunder, J. A. Márquez-Prieto, G. Gurieva, T. Unold and S. Schorr

DOI: 10. 1039/c7ce02090b

Weitere Neuigkeiten aus der Kesterit-Forschung

arö


           



Das könnte Sie auch interessieren
  • <p>Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet. &nbsp;</p>SCIENCE HIGHLIGHT      14.02.2019

    Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

    Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen. [...]


  • NACHRICHT      11.02.2019

    HZB beteiligt sich an zwei Exzellenzclustern

    Am Helmholtz-Zentrum Berlin (HZB) forschen Wissenschaftlerinnen und Wissenschaftler an neuartigen Materialsystemen, die Energie umwandeln oder speichern können. Diese Kompetenzen bringt das HZB nun auch in die Exzellenzcluster „MATH+“ und „UniSysCat“ ein, die von Berliner Universitäten koordiniert werden. Die Helmholtz-Gemeinschaft fördert die HZB-Beteiligung in den nächsten drei Jahren im Rahmen des Helmholtz-Exzellenznetzwerks mit insgesamt 1,8 Millionen Euro. [...]


  • <p>Neue Photovoltaik-Elemente lassen sich in Fassaden integrieren. Als besonders gelungenes Beispiel gilt die Copenhagen International School.</p>NACHRICHT      04.02.2019

    Klimaneutrale Stadt: Unabhängige Beratungsstelle für bauwerkintegrierte Photovoltaik

    Das Helmholtz-Zentrum Berlin eröffnet im Frühjahr die nationale Beratungsstelle für bauwerkintegrierte Photovoltaik (BAIP). Die Beratungsstelle unterstützt Bauherren, Architekten und Stadtplanung dabei, die Gebäudehülle für die Energiegewinnung zu aktivieren. Das Projekt wird von der Helmholtz-Gemeinschaft im Rahmen des Wissenstransfers für vier Jahre gefördert. [...]




Newsletter