Neutronentomographie: Einblick ins Innere von Zähnen, Wurzelballen, Batterien und Brennstoffzellen

Auch Fossilien wie dieser 250 Mio. Jahre alte Lystrosaurus-Schädel lassen sich mit Neutronentomographie zerstörungsfrei untersuchen.

Auch Fossilien wie dieser 250 Mio. Jahre alte Lystrosaurus-Schädel lassen sich mit Neutronentomographie zerstörungsfrei untersuchen. © MfN Berlin

Neutronentomographie zeigt, wie sich nach Torsion (links) oder Zugspannung (rechts) verschiedene Kristallphasen im Material verteilen.

Neutronentomographie zeigt, wie sich nach Torsion (links) oder Zugspannung (rechts) verschiedene Kristallphasen im Material verteilen. © HZB/Wiley VCH

Zeitaufgel&ouml;ste Tomographie einer Lupinenwurzel (gelbgr&uuml;n), nachdem deuteriertes Wasser (D<sub>2</sub>O) von unten zugegeben wurde. Der Zeitverlauf zeigt, wie das Wasser (H<sub>2</sub>O, dunkelblau) durch das D<sub>2</sub>O von unten verdr&auml;ngt wird. &copy;Christian T&ouml;tzke/ University of Potsdam

Zeitaufgelöste Tomographie einer Lupinenwurzel (gelbgrün), nachdem deuteriertes Wasser (D2O) von unten zugegeben wurde. Der Zeitverlauf zeigt, wie das Wasser (H2O, dunkelblau) durch das D2O von unten verdrängt wird. ©Christian Tötzke/ University of Potsdam

Einen umfassenden Überblicksbeitrag über bildgebende Verfahren mit Neutronen hat ein Team am Helmholtz-Zentrum Berlin (HZB) und der Europäischen Spallationsquelle ESS im renommierten Fachjournal Materials Today (Impaktfaktor 21,6) publiziert.  Die Autoren berichten über die neuesten Entwicklungen in der Neutronentomographie. An Beispielen zeigen sie die Einsatzmöglichkeiten dieser zerstörungsfreien Methode auf. Neutronentomographien haben Durchbrüche in der Zahnmedizin, Kunstgeschichte, Pflanzenphysiologie, Paläobiologie, Batterieforschung oder Werkstoffanalyse ermöglicht.

Neutronen dringen tief ins Innere der Probe ein, ohne sie dabei zu zerstören. Darüber hinaus unterscheiden Neutronen auch leichte Elemente wie Wasserstoff, Lithium oder Wasserstoff-haltige Substanzen voneinander. Weil sie selbst ein magnetisches Moment besitzen, reagieren sie auf kleinste magnetische Strukturen im Materialinnern. Dies macht Neutronen zu einem vielseitigen und mächtigen Werkzeug für die Materialforschung. Aus der Absorption der Neutronen in der Probe lassen sich 2D- oder 3D-Abbildungen errechnen, sogenannte Neutronentomographien. An der Neutronenquelle des HZB, dem BER II, arbeitet ein weltweit renommiertes Team um Dr. Nikolay Kardjilov und Dr. Ingo Manke daran, die Methoden der Neutronentomographien stetig zu erweitern und zu verbessern.

In ihrem Übersichtsbeitrag beschreiben die Autoren die neuesten Verbesserungen in der Neutronenbildgebung und stellen herausragende Anwendungen vor. Verbesserungen in den letzten Jahren haben die räumliche Auflösung bis in den Mikrometerbereich gesteigert. Das ist mehr als zehnmal genauer als medizinische Röntgentomographien. Auch sind nun raschere Aufnahmen möglich, was es auch erlaubt, Prozesse in Materialien zu beobachten: Ein Beispiel sind  die „in operando“-Messungen einer Brennstoffzelle im laufenden Betrieb, die zeigen, wie genau sich Wasser in der Brennstoffzelle verteilt. Dies liefert wichtige Hinweise für das optimale Design der Zelle.

Die Einsatzmöglichkeiten reichen von der Beobachtung des Lithium-Ionentransports in Batterien und Festigkeitsanalysen von Industriekomponenten über Untersuchungen an Zähnen oder Knochen oder dem Wurzelwerk von Pflanzen bis hin zur zerstörungsfreien Analyse von historischen Objekten wie alten Schwertern und Ritterrüstungen, um Hinweise auf Fertigungsmethoden früherer Zeiten zu erhalten.

“Die Neutronentomographie ist extrem vielseitig nutzbar. Wir arbeiten daran, weitere Verbesserungen zu erreichen, und hoffen, dass diese stark nachgefragte Methode künftig auch an modernen Spallationsquellen zur Verfügung steht“, sagt Nikolay Kardjilov.


Zur Publikation: Materials Today 2018: “Advances in neutron imaging”, Nikolay Kardjilov, Ingo Manke, Robin Woracek, André Hilger, John Banhart

DOI: 10.1016/j.mattod.2018.03.001


Lesetipp: Über die Forschung an Schwertern und Ritterhelmen berichten wir im Campusblog

 

arö


Das könnte Sie auch interessieren

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.
  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.