Keywords: energy (293) solar energy (232) cooperations (131) technology transfer (44) events (382)

News    12.06.2018

HZB experts present cooperation opportunities at Intersolar Europe in Munich

Tandem solar cells combining silicon and perovskite layers could convert up to 30 percent energy into electricity.

How do environmental influences influence the performance of solar modules? The Competence Center for Photovoltaics (PVcomB) is investigating this question at the outdoor test stand.

The international exhibition “Intersolar” brings photovoltaic research and the solar industry together. It is a perfect opportunity for researchers from Helmholtz-Zentrum Berlin to present thin-film photovoltaic technologies and projects, including for example perovskite solar cells and tandem solar cells.

Intersolar Europe(22 to 22 June) is one of the most important international events for the solar industry, where manufacturers, suppliers, distributors and service providers come to learn of new developments in the solar industry. A team from Helmholtz-Zentrum Berlin (HZB) will be there, in Hall A2, Booth 572, to show which topics HZB is researching in the field of renewable energies. Important points of contact for industry are the Helmholtz Innovation Lab HySPRINT and the Competence Centre Thin-Film and Nanotechnology for Photovoltaics Berlin (PVcomB). These two institutes promote technology transfer and will be there to answer questions at the exhibition.

In the Helmholtz Innovation Lab HySPRINT, silicon-based materials are being combined with organometallic perovskite crystals to develop so-called hybrid tandem cells. Such cells can be used for solar generation of electricity or hydrogen.

The Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) has industrial reference lines for manufacturing CIGS and silicon photovoltaics. Teams of HZB experts are collaborating with industry to develop novel thin-film technologies and products. Joint research projects with industrial partners have already culminated in many successful innovations.

Research into new material systems for photovoltaics is an important focal topic at HZB. The Centre is specialised in so-called energy materials that convert or store energy. This includes solar cells, material systems for generating hydrogen from sunlight, and magnetic material systems for developing energy-efficient information technologies. For studying interfaces and surfaces of thin films, HZB operates the photon source BESSY II and a series of CoreLabs with latest generation equipment.

HZB’s info stand is in Hall A2, Booth 572 (A2.572). The exhibition will take place from 20 to 22 June 2018 in Munich

 

More information

- on HySPRINT

- on PVcomB

- on INTERSOLAR EUROPE

(sz)


           



You might also be interested in
  • NEWS      15.01.2019

    Two new Helmholtz Young Investigator Groups will start in 2019

    Starting in 2019, Helmholtz-Zentrum Berlin (HZB) will be establishing two new Helmholtz Young Investigator Groups and thereby strengthening its competencies in catalysis research. The Helmholtz Association will be funding each group with 150,000 euros annually over a period of five years, and HZB will be matching that sum with its own funds. [...]


  • <p>Marcus B&auml;r, here in EMIL lab at HZB, has accepted a professorship at FAU in South-Germany.</p>NEWS      11.01.2019

    Marcus Bär accepts W2 professorship for X-ray spectroscopy in Erlangen-Nuremberg

    Prof. Marcus Bär has accepted a professorship for X-ray spectroscopy at the Friedrich-Alexander Universität Erlangen-Nürnberg (FAU). Bär heads the Department of Interface Design at Helmholtz-Zentrum Berlin (HZB). The new W2 professorship was established in cooperation with HZB and Forschungszentrum Jülich in order to strengthen the Helmholtz-Institute Erlangen-Nürnberg für Renewable Energy (HI ERN). In the future, Bär will also be working on HI ERN research topics at HZB, thereby contributing to the intensification of cooperation. [...]


  • <p>(a) Neutronen-Eigenspannungsmessung an einer Schwei&szlig;probe aus handels&uuml;blichen Stahl, (b) Magnetfeldmessung, (c) Schwei&szlig;nahtquerschliff.</p>SCIENCE HIGHLIGHT      21.12.2018

    Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien Prüfverfahren

    Materialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und –prüfung (BAM) die Eigenspannungen von Schweißnähten aus ferromagnetischem Stahl analysiert. Die Ergebnisse helfen zerstörungsfreie elektromagnetische Prüfverfahren zu verbessern. [...]




Newsletter