GRECO kick-off in Madrid: advancing photovoltaics through “open science”

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

The Helmholtz-Zentrum Berlin (HZB) is one of ten international partners in the GRECO pilot project funded under the European Union framework programme Horizon 2020. They intend to jointly test OpenScience approaches for exchanging knowledge and research data in order to accelerate the development of innovative PV products worldwide. GRECO will receive three million euros in funding through 2021.

The kick-off meeting took place in Madrid end of June 2018. The Institute for Solar Energy at the Universidad Politécnica de Madrid (UPM) is coordinating the research project that will see industry organisations, companies, government, academia and scientific organisations working together.

HZB contributions: materials data base and videotutorials

Dr. Eva Unger and her Helmholtz Young Investigator Group at the HZB are participants in GRECO: “We are contributing our expertise in the field of perovskite absorber layers for tandem photovoltaics and intend to establish a materials database in which key parameters and data from various absorbers can be brought together and made available in an open manner”, explains the chemist. She is also planning a video tutorial on the measurement and characterisation of solar cells. “Characteristic current-voltage curves are often not informative enough for determining the efficiency of perovskite solar cells”, explains the PV expert. The video is intended to contribute to establishing uniform quality standards for measuring solar cells worldwide.

Transparency and innovative products

Through use of Open Science Tools such as Open Access, Open Data, Open Education, Open Notebooks, Open Software, and Open Peer Review, GRECO wants to create complete transparency and exchange in the conduct of research. “This will enable new scientific concepts to be quickly applied by third parties, accelerating progress”, commented coordinators Dr. Ana B. Cristóbal and Prof. Carlos del Cañizo of the Universidad Politécnica de Madrid.

Innovative products to be developed by GRECO include repair and recycling methods for solar modules, precise modelling of power yields over timescales of decades (ageing), solar-powered irrigation systems, innovative solar modules as well as PV heat pump systems for use in various areas of everyday life.

 

Scientific Partners: Universidad Politécnica de Madrid, Pompeu Fabra University, Universidad de Évora, Central Solar Energy Laboratory of the Bulgarian Academy of Sciences, Helmholtz-Zentrum Berlin, Reiner Lemoine Institute, and Universidade de São Paulo

Industrial partners: Insolight SA (Switzerland) and the Euro-Mediterrean Irrigators Association (Spain)

In addition, the project is receiving support from the region of Andalusia, Spain.

GRECO stands for Fostering a Next GeneRation of European Photovoltaic SoCiety through Open Science

arö

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Nachricht
    24.01.2023
    NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Der 2. Netzwerktag der Allianz BIPV findet statt am

    14.02.2023
    10:00 - ca. 16:00 Uhr

    Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.