Qumran-Rollen vom Toten Meer an BESSY II untersucht

Antike Schriftstücke vor dem Verfall zu bewahren oder sie zu restaurieren ist eine Kunst für sich. Um sie auszuüben, ist es von enormer Bedeutung herauszufinden, wie beispielsweise Pergament durch bestimmte Tinten über die Jahrhunderte zerstört wird; und wie dies zu vermeiden wäre. Für solche Untersuchungen ist Röntgenstrahlung ein hervorragendes Werkzeug. Um diese Forschungsarbeiten zu unterstützen, hat BESSY nun einen Röntgenmessplatz so ausgestattet, dass auch sehr empfindliche Objekte, wie antike Pergamentrollen oder Gemälde auf Leinwand oder Holz untersucht werden können, ohne dabei Schaden zu nehmen.

Die Röntgenstrahlung an einer Synchrotronstrahlungsquelle wie BESSY eignet sich für diese Untersuchungen besonders, weil man so selbst Spuren chemischer Elemente als Bestandteil der Tinte, Farb- oder Zeichenmaterialien an einer bestimmten Stelle eines Schriftstückes nachweisen kann, und das absolut zerstörungsfrei. Durch das Messen vieler solcher Stellen erstellen Naturwissenschaftler eine "chemische Landkarte", die Archäologen oder Kunsthistorikern Rückschlüsse auf die Herstellungstechnik und die Herkunft (Provenienz) erlaubt: wichtige Informationen für Konservatoren und Restauratoren in Museen und Bibliotheken.

Eigentlich ideal, jedoch stand einer breiteren Anwendung der Methode entgegen, dass eine Vielzahl "Altertümer" außerordentlich empfindlich auf Veränderung der Umgebungstemperatur und der Luftfeuchtigkeit reagieren. An den Messplätzen von Synchrotronstrahlungsquellen ist die erforderliche Klimakonstanz nicht gegeben. Wegen dieses Dilemmas hatten Spezialisten im Rahmen des internationalen Workshop "Synchrotron Radiation in Art and Archaeology" 2006 angeregt, die Klimabedingungen an den Messeinrichtungen für zukünftige Projekte zu verbessern. BESSY ist dieser Anregung nun nachgekommen und hat einen spezialisierten Messplatz (µSpot-Messplatz) mit einer Vollklimatisierung ausgestattet. "Archäometrie ist ein spannendes Forschungsgebiet und wir wollen dazu beitragen, dieser relativ neuen Nutzerschaft die einzigartigen Experimentierbedingungen der Analytik mit Synchrotronstrahlung zu erschließen", begründet der wissenschaftliche Direktor Wolfgang Eberhardt die Motivation für den Umbau.

Die neue Probenumgebung am µSpot-Messplatz bei BESSY erlaubt es, die Temperatur im Bereich von 17-24°C auf 1° genau zu halten. Die Feuchtigkeit kann zwischen 40% und 60% mit der Genauigkeit von 2.5% relative Feuchte eingestellt werden. Die erreichbaren Werte sind somit besser als die, die führende Wissenschaftler und Konservatoren als Mindestanforderung genannt hatten. Mit der neuen Probenumgebung sind die Voraussetzungen geschaffen, Studien an antiken Pergamentrollen wie den Qumran-Rollen zu forcieren und auch empfindliche Kunstobjekte auf Leinwand oder Holz zu untersuchen.

Der µSpot-Messplatz wird von einer Kooperation betrieben. Zu den Partnern gehören die Technische Universität Berlin, das Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm, die Bundesanstalt für Materialforschung und -prüfung (BAM) und BESSY. Das von der BAM koordinierte "Netzwerk zur interdisziplinären Kulturguterhaltung (N.I.Ke.)" ist an den Forschungsarbeiten beteiligt.


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.