Themen: Forschungsreaktor (90) Spintronik (93) Quantenmaterialien (28)

Nachricht    30.08.2008

Dreidimensionale Bildgebung- erstmalige Einblicke in Magnetfelder

Auf dem Bild schwebt der Dipolmagnet über einem gekühlten Supraleiter, ein aus Yttrium- Barium-Kupferoxid (YBCO) bestehender keramischer Stoff.

Die zwei Bilder zeigen das magnetische Feld eines Dipolmagneten, sichtbar gemacht mithilfe von polarisierten Neutronen.

3D-Bilder werden nicht nur in der Medizin erzeugt, etwa mithilfe der Röntgen- oder Kernspinresonanztomographie. Auch Materialwissenschaftler blicken gern ins Innere eines Körpers. Forschern des Berliner Hahn-Meitner-Instituts (HMI) ist es nun in Kooperation mit der Technischen Fachhochschule Berlin (TFH) erstmals gelungen, Magnetfelder im Inneren von massiven, nicht transparenten Materialien dreidimensional darzustellen. Das berichten Nikolay Kardjilov und Kollegen in der aktuellen Ausgabe der Zeitschrift Nature Physics, die eine Online-Version als Highlight-Beitrag in dieser Woche vorab veröffentlicht.

Die Forscher der Abteilung Imaging haben dafür die Neutronentomographie genutzt. Neutronen, das sind elektrisch ungeladene Elementarteilchen, besitzen ein so genanntes magnetisches Moment und sind daher besonders geeignet, um Phänomene wie den Mag-netismus zu untersuchen. Sie verhalten sich im Magnetfeld ähnlich wie Kompassnadeln, das heißt, sie führen kleine Kreiselbewegungen um die Achse eines angelegten Magnet-feldes aus. Physiker sprechen vom Neutronenspin. Dieser kann polarisiert werden. Das heißt, alle Kompassnadeln richten sich gleichmäßig zum Magnetfeld aus. Wird eine Probe mit derartigen spinpolarisierten Neutronen bestrahlt, ändert sich der Drehwinkel der kleinen Kreisel, ihre Spinrotation.

Die Gruppe um Kardjilov hat dies als Messparameter für die Tomographie-Experimente genutzt. Sie haben Apparaturen entwickelt, so genannte Analysatoren, die nur Neutronen mit einer bestimmten Drehrichtung passieren lassen. Damit wird das Bild erzeugt. Kardjilov erläutert dies im Vergleich zu einer medizinischen CT-Aufnahme: Knochen oder Gewebe lassen beim Bestrahlen mit Röntgenlicht je nach ihrer Dichte die Lichtwellen in unterschiedlicher Intensität passieren. „So ähnlich ist es mit unserer magnetischen Probe, die die Spinrotation der Neutronen ändert“, sagt Nikolay Kardjilov. „Der nachgeschaltete Analysator lässt nur Neutronen mit einem bestimmten Drehspin passieren, dadurch wird der Kontrast erzeugt. Je nachdem, wie die magneti-schen Eigenschaften in der Probe verteilt sind. Wenn man die Probe dabei dreht, erhält man ein 3D-Bild.“

Nikolay Kardjilov hat seit 2005 die Neutronentomographie am HMI aufgebaut, und nun ist seine Gruppe die erste, die die Spinrotation als Messsignal für die Bildgebung verwendet. Normalerweise nutzen Wissenschaftler wie beim Licht die einfache Absorption der Strahlung beziehungsweise die Fähigkeit einer Probe, Strahlung hindurchzulassen. Eine weitere Grundlage für den Erfolg der Experimente waren die Polarisatoren und Analysatoren sowie ortsauflösende Detektoren, die die HMI-Forscher in Eigenentwicklung gebaut haben.

Magnetismus ist eines der zentralen Forschungsfelder am HMI. Für das Verständnis der Hochtemperatursupraleitung ist es zum Beispiel eminent wichtig zu verstehen, wie sich magnetische Flusslinien verteilen und wie man diese Flusslinien im Material festhalten kann. Mit Kardjilovs Experimentaufbau wird es nun unter anderem möglich sein, magnetische Domänen in magnetischen Kristallen dreidimensional zu visualisieren.

Veröffentlichung:

Nikolay Kardjilov, Ingo Manke, Markus Strobl, André Hilger, Wolfgang Treimer, Michael Meissner, Thomas Krist & John Banhart: Three-dimensional imaging of magnetic fields with polarized neutrons, Nature Physics, Published online: 30 March 2008, doi:10.1038/nphys912


           



Das könnte Sie auch interessieren
  • <p>Experimente an der Femtoslicing-Anlage von BESSY II zeigten den ultraschnellen Drehimpulsfluss von Gd- und Fe-Spins zum Gitter w&auml;hrend der Entmagnetisierung der GdFe-Legierung.</p>SCIENCE HIGHLIGHT      10.05.2019

    Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?

    Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden. Magnetisierung wiederum ist fundamental mit dem Drehimpuls der Elektronen im Material verbunden. Ein Forscherteam des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnte nun an BESSY II den Drehimpulstransfer in einer ferrimagnetischen Eisen-Gadolinium-Legierung im Detail verfolgen. Dabei gelang es ihnen, am Femtoslicing-Experiment bei BESSY II die ultraschnelle optische Entmagnetisierung zu vermessen und deren grundlegende Prozesse und Geschwindigkeitsgrenzen zu verstehen. Die Forschungsergebnisse wurden in der Zeitschrift „Physical Review Letters“ veröffentlicht. [...]


  • <p>Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet. &nbsp;</p>SCIENCE HIGHLIGHT      14.02.2019

    Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

    Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen. [...]


  • <p>Wie Lithium in die Silizium-Anode einwandert, hat das Team mit Neutronenstrahlen (rote Pfeile) gemessen.</p>SCIENCE HIGHLIGHT      28.01.2019

    Batterien mit Siliziumanoden: Neutronenexperimente zeigen, wie Oberflächenstrukturen die Kapazität reduzieren

    Theoretisch könnten Anoden aus Silizium zehnmal mehr Lithium-Ionen speichern als die Graphit-Anoden, die seit vielen Jahren in kommerziellen Lithium-Batterien eingesetzt werden. Doch bisher sinkt die Kapazität von Silizium-Anoden mit jedem weiteren Lade-Entladezyklen stark ab. Nun hat ein HZB-Team mit Neutronenexperimenten am BER II in Berlin und am Institut Laue-Langevin in Grenoble aufgeklärt, was an der Oberfläche der Siliziumanode während des Aufladens passiert und welche Prozesse die Kapazität reduzieren. [...]




Newsletter