2.8 Mio Euro Funding for preparing perovskite solar cells for high volume manufacturing

View into the new HySPRINT laboratory at HZB, where perovskit solar cells can be produced and tested. Photo: HZB/M. Setzpfandt

View into the new HySPRINT laboratory at HZB, where perovskit solar cells can be produced and tested. Photo: HZB/M. Setzpfandt

HZB participates in a new consortium for Perovskite solar technology that is led by Oxford PV Germany GmbH. The consortium is funded by the German Ministry of Economics and Energy with 2.8 Million Euros and aims to further demonstrate the manufacturability of perovskite-silicon tandem solar cells.

Further partners are Von Ardenne GmbH, Fraunhofer-Institute for Solar Energy Systems ISE, and the Technical University of Berlin. The project will focus on preparing perovskite solar cell technology for high volume manufacturing. This will include the optimisation of the perovskite-silicon tandem solar cell architecture, to make further efficiency improvements on industrial 156 mm x 156 mm wafer formats; the refinement of industrial scale process technology; and life-cycle analysis to inform the social-environmental impact of the tandem solar cells.

"Perovskite-based tandem solar cells are very promising to achieve really high efficiencies. In order to contribute to this exciting development we have built up strong competences in perovskites and tandem cell technology such as the Helmholtz Innovation Lab HySPRINT", says Prof. Dr. Rutger Schlatmann, Director of the Competence Center Thin Film and Nanotechnology for Photovoltaics Berlin (PVcomB) at HZB. "To the consortium with Oxford PV, we contribute our vast expertise in high-efficiency silicon heterojunction bottom cells", adds Dr. Bernd Stannowski who is leading these activities at the PVcomB.

Dr. Chris Case, Chief Technology Officer at Oxford PV says “The consortium partners bring together the perfect balance of expertise. Refining the manufacturing process of our perovskite solar cell technology will ensure the highest performing tandem solar cell in the field and the easy transfer of our technology into silicon solar cell and module production lines.”

 In June 2018, HZB and Oxford achieved an independently certified efficiency of 25.2 % for their perovskite silicon tandem solar cell. “In our cooperation, we aim to further optimize perovskite silicon tandem cells, demonstrate their scalability and facilitate their integration into large-area solar modules”, says Rutger Schlatmann.

Further Information:

Press Release Oxford PV

(sz/Oxford PV)


You might also be interested in

  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.