Keywords: energy (304) solar energy (240) technology transfer (47)

Science Highlight    17.09.2018

Patented nanostructure for solar cells: Rough optics, smooth surface

The nanostructure for capturing light is imprinted on silicon oxide (blue) and then "levelled" with titanium oxide (green). The result is an optically rough but smooth layer on which crystalline silicon can be grown.
Copyright: HZB

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by impairing the electronic properties of the material.

Rough and smooth

The idea that David Eisenhauer worked out as part of his doctorate in Becker's team sounds quite simple, but it requires a completely new approach: to produce a structure that behaves "optically rough" and scatters the light, but at the same time provides a "smooth" surface on which the silicon layer (the most important layer of the solar cell) can grow with virtually no defects.

Several steps for the SMART surface

The procedure consists of several steps: first, the researchers imprint an optimised nanostructure onto a still liquid silicon oxide precursor layer that is then cured with UV light and heat. This creates tiny, regularly arranged cylindrical elevations that are ideal for capturing light. However, the absorbing layer of crystalline silicon cannot grow flawlessly on this rough surface, so these structures have an unfavorable effect on the quality of the solar cell. In order to resolve this conflict, a very thin layer of titanium oxide is spin coated on top of the nanostructure in order to produce a relatively smooth surface on which the actual absorber material can be deposited and crystallized.

The coating has the descriptive name "SMART" for smooth anti-reflective three-dimensional texture. It reduces reflections and brings more light into the absorbing layer without impairing its electronic properties. The procedure is now patented.

Christiane Becker heads a Young Investigator Group at the HZB funded by the BMBF under the NanoMatFutur programme. As part of the BerOSE Joint Lab, she works closely with the Zuse Institute to use computer simulations for understanding the effects of nanostructuring on material properties.


Published in Scientific Reports (2017): Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass; David Eisenhauer, Grit Köppel, Klaus Jäger, Duote Chen, Oleksandra Shargaieva, Paul Sonntag, Daniel Amkreutz, Bernd Rech & Christiane Becker 

doi: 10.1038/s41598-017-02874-y




You might also be interested in
  • <p>SnSe is a highly layered orthorhombic structure. SnSe undergoes a phase transition of second order at 500&deg;C with an increase of the crystal symmetry from space group Pnma (left) to Cmcm (right).</p>SCIENCE HIGHLIGHT      24.04.2019

    High-efficiency thermoelectric materials: new insights into tin selenide

    Tin selenide might considerably exceed the efficiency of current record holding thermoelectric materials made of bismuth telluride. However, it was thought its efficiency became enormous only at temperatures above 500 degrees Celsius. Now measurements at the BESSY II and PETRA IV synchrotron sources show that tin selenide can also be utilised as a thermoelectric material at room temperature – so long as high pressure is applied. [...]

  • <p>Frederike Lehmann earned an award for her presentation at the annual meeting of the German Society for Crystallography.</p>NEWS      11.04.2019

    PhD student of HZB earns Best Presentation Award of the Young Crystallographers

    Frederike Lehmann received a prize for her presentation at the annual conference of the German Society of Crystallography in Leipzig on 28 March 2019. She is doing her doctorate in the Department of Structure and Dynamics of Energy Materials at the HZB under Prof. Dr. Susan Schorr at the Graduate School HyPerCell. [...]

  • <p>The SEM shows Molybdenum sulfide deposited at room temperature.</p>SCIENCE HIGHLIGHT      04.04.2019

    Catalyst research for solar fuels: Amorphous molybdenum sulphide works best

    Efficient and inexpensive catalysts will be required for production of hydrogen from sunlight. Molybdenum sulphides are considered good candidates. A team at HZB has now explained what processes take place in molybdenum sulphides during catalysis and why amorphous molybdenum sulphide works best. The results have been published in the journal ACS Catalysis. [...]