Themen: Forschungsreaktor (90) Technologietransfer (47) Spintronik (92) Quantenmaterialien (27) HZB-Eigenforschung (95)

Science Highlight    02.10.2018

Neutronen tasten Magnetfelder im Innern von Proben ab

Die Bilder zeigen den Verlauf der magnetischen Feldlinien im Inneren eines supraleitenden Blei-Quaders in zwei verschiedenen Schnittebenen (gestrichelter Umriss der Bleiprobe). Der Skalenstrich entspricht 5 mm.
Copyright: HZB

Mit Hilfe einer neu entwickelten Neutronen-Tomographie-Methode hat ein HZB-Team erstmals den Verlauf von magnetischen Feldlinien im Innern von Materialien abbilden können. Die „Tensorielle Neutronen-Tomographie“ verspricht neue Einblicke in Supraleiter, Batterie-Elektroden und andere Energiematerialien.

Magnetische Felder im Innern von Proben zu messen gelingt bislang nur auf indirekte Weise. Mit Licht, Röntgenstrahlung oder Elektronen lassen sich zwar magnetische Orientierungen abtasten, allerdings nur auf den Oberflächen von Materialien. Neutronen dagegen dringen tief in die Probe ein, und können – dank ihrer eigenen magnetischen Eigenschaften – präzise Aufschluss über magnetische Felder im Inneren geben. Bislang aber ließen sich nur grob die unterschiedlich ausgerichteten magnetischen Domänen mit Hilfe von Neutronen kartieren, nicht aber die Vektorfelder (Richtungen und Stärken) des Magnetfelds im Inneren der Probe.  

"Spinpolarisierte" Neutronen

Nun hat ein Team um Dr. Nikolay Kardjilov und Dr. Ingo Manke am HZB eine neue Methode entwickelt, um die Magnetfeldlinien im Innern von massiven, dicken Proben zu vermessen: Für die Tensorielle Neutronen-Tomographie setzen sie Spin-Flipper und -Polarisatoren ein, die dafür sorgen, dass nur Neutronen mit gleichgerichteten Spins die Probe durchdringen. Treffen solche spinpolarisierten Neutronen auf ein magnetisches Feld im Innern, regt dieses die Neutronenspins zur Präzession an, so dass sich die Spin-Polarisationsrichtung verändert, was Rückschlüsse auf die Feldlinien erlaubt.

Berechnung mit TMART-Algorithmus

Mit der neu entwickelten Experimentiermethode lässt sich aus neun einzelnen Tomographien mit jeweils unterschiedlichen Neutronenspin-Einstellungen eine dreidimensionale Abbildung des Magnetfelds im Innern der Probe berechnen. Hierzu wird ein von Dr. André Hilger am HZB neu entwickelter, äußerst komplexer mathematischer Tensor-Algorithmus eingesetzt, der „TMART“ getauft wurde.

Feldlinien im Inneren von Supraleitern

Die Experten haben die neue Methode an gut verstandenen Proben getestet und evaluiert. Im Anschluss konnten sie erstmals das komplexe Magnetfeld im Inneren von supraleitendem Blei kartieren.

Die Probe aus massivem, polykristallinem Blei wurde auf 4 Kelvin abgekühlt (Blei wird supraleitend unterhalb von 7 Kelvin) und einem Magnetfeld von 0,5 Millitesla ausgesetzt. Dabei wird das Magnetfeld zwar aufgrund des Meissner-Effekts aus dem Probeninneren verdrängt, dennoch bleiben magnetische Flusslinien an den (nicht-supraleitenden) Korngrenzen der polykristallinen Probe haften. Diese Flusslinien verschwinden auch dann nicht, nachdem das äußere Feld abgeschaltet wurde, weil sie zuvor im Innern der supraleitenden Kristallkörner Ströme induziert haben, die diese Felder nun aufrechterhalten.

Anwendungen in der Materialforschung

„Zum ersten Mal können wir im Inneren eines massiven Materials das magnetische Vektor-Feld in seiner ganzen Komplexität dreidimensional sichtbar machen“ sagt HZB-Physiker Manke. „Neutronen können gleichzeitig massive Materialien durchdringen und Magnetfelder nachweisen. Es gibt zurzeit keine andere Methode, die das ermöglicht.“

Die Magnetische Tensor Tomografie ist zerstörungsfrei und kann Auflösungen bis in den Mikrometerbereich erreichen. Die Einsatzbereiche sind extrem vielfältig. Sie reichen von der Kartierung von magnetischen Feldern in Supraleitern und der Beobachtung von magnetischen Phasenübergängen bis zur Materialanalyse, die auch für die Industrie von großem Interesse ist: So lassen sich Feldverteilungen in Elektromotoren und metallischen Komponenten abbilden und Stromflüsse in Batterien, Brennstoffzellen oder anderen Antriebssystemen mit dieser Methode visualisieren.

 

Zur Publikation in Nature Communications (2018): "Tensorial Neutron Tomography of Three-Dimensional Magnetic Vector Fields in Bulk Materials"; A. Hilger, I. Manke, N. Kardjilov, M. Osenberg, H. Markötter & J. Banhart; 

DOI: 10.1038/s41467-018-06593-4

arö


           



Das könnte Sie auch interessieren
  • <p>Das Enzym MHETase ist ein riesiges komplex gefaltetes Molek&uuml;l. MHET-Molek&uuml;le aus PET-Kunststoff docken an einer aktiven Stelle im Inneren der MHETase an und werden dort aufgespalten.</p>SCIENCE HIGHLIGHT      12.04.2019

    „Molekulare Schere“ für den Plastikmüll

    Ein Team der Universität Greifswald und des Helmholtz-Zentrums Berlin (HZB) hat an BESSY II die Struktur eines wichtigen Enzyms ("MHETase") entschlüsselt. Die MHETase wurde in einem Bakterium entdeckt und ist in der Lage, zusammen mit einem zweiten Enzym, der PETase, den weit verbreiteten Kunststoff PET in seine Grundbausteine zu zerlegen. Die 3D-Struktur der MHETase ermöglichte es den Forschern bereits, die Aktivität dieses Enzyms gezielt zu optimieren, um es zusammen mit der PETase für das nachhaltige Recycling von PET zu nutzen. Die Ergebnisse wurden in der Fachzeitschrift Nature Communications veröffentlicht. [...]


  • <p>Die Rasterelektronenmikroskopie zeigt einen Molybd&auml;nsulfidfilm, der bei Raumtemperatur aufgebracht wurde.</p>SCIENCE HIGHLIGHT      04.04.2019

    Katalysatorforschung für Solare Brennstoffe: Amorphes Molybdänsulfid funktioniert am besten

    Für die Produktion von Wasserstoff mit Sonnenlicht werden effiziente und preisgünstige Katalysatoren gebraucht. Molybdänsulfide gelten als gute Kandidaten. Nun hat ein Team am HZB aufgeklärt, welche Prozesse während der Katalyse an  Molybdänsulfiden ablaufen und wieso ausgerechnet amorphes Molydänsulfid am besten funktioniert. Die Ergebnisse wurden im Fachjournal ACS-Catalysis veröffentlicht. [...]


  • <p>Phillippe Wernet schl&auml;gt am Ende seines Beitrags einen gro&szlig;en Bogen von der Vergangenheit (Opticae Thesaurus, 1572) der Forschung mit Licht bis in die Zukunft.</p>SCIENCE HIGHLIGHT      02.04.2019

    HZB an Sonderausgabe zu Ultraschneller Dynamik mit Röntgenmethoden beteiligt

    In der jetzt erschienenen Sonderausgabe der „Philosophical Transactions of the Royal Society of London“  berichten international ausgewiesene Experten über neue Entwicklungen bei Röntgenquellen und ultraschnellen zeitaufgelösten Experimenten. Auch HZB-Physiker wurden zu Beiträgen aufgefordert und haben geliefert. [...]




Newsletter