Keywords: energy (312) cooperations (139) solar fuels (77) BESSY II (269) HZB own research (99)

Science Highlight    18.10.2018

Nanodiamonds as photocatalysts

Doped Diamond Foam.
Copyright: P. Knittel/Fraunhofer IAF

Diamond nanomaterials are considered hot candidates for low-cost photocatalysts. They can be activated by light and can then accelerate certain reactions between water and CO2 and produce carbon-neutral "solar fuels". The EU project DIACAT has now doped such diamond materials with boron and shown at BESSY II how this could significantly improve the photocatalytic properties.

Climate change is in full swing and will continue unabated as long as we do not succeed in significantly reducing CO2 emissions. For this we need all the options. One idea is to return the greenhouse gas CO2 to the energy cycle: CO2 could be processed with water into methanol, a fuel that can be excellently transported and stored. However, the reaction, which is reminiscent of a partial process of photosynthesis, requires energy and catalysts. If we succeed in using this energy from sunlight and developing light-active photocatalysts that are not made of rare metals such as platinum, but of inexpensive and abundantly available materials, there would be a chance of "green" solar fuels being produced in a climate-neutral way.

Diamond Nanomaterials need UV for activation

A candidate for such photocatalysts are so-called diamond nanomaterials - these are not precious crystalline diamonds, but tiny nanocrystals of a few thousand carbon atoms that are soluble in water and look more like black slurry, or nanostructured "carbon foams" with high surface area. In order for these materials to become catalytically active, however, they require UV light excitation. Only this spectral range of sunlight is rich enough in energy to transport electrons from the material into a "free state". Only then solvated electrons can be emitted in water and react with the dissolved CO2 to form methanol.

Can doping help?

However, the UV component in the solar spectrum is not very high. Photocatalysts that could also use the visible spectrum of sunlight would be ideal. This is where the work of HZB-scientist Tristan Petit and his cooperation partners in DIACAT comes in: modelling the energy levels in such materials, performed by Karin Larsson in Uppsala University, shows that intermediate stages can be built into the band gap by doping with foreign atoms. Boron, a trivalent element, appears to be particularly important.

Experiments at BESSY II show: yes, but...

Petit and his team therefore investigated samples of polycrystalline diamonds, diamond foams and nanodiamonds. These samples had previously been synthesized in the groups of Anke Krüger in Würzburg and Christoph Nebel in Freiburg. At BESSY II, X-ray absorption spectroscopy was used to precisely measure the unoccupied energy states where electrons could possibly be excited by visible light. "The boron atoms  present near the surface of these nanodiamonds actually lead to the desired intermediate stages in the band gap," explains Ph.D student Sneha Choudhury, first author of the study. These intermediate stages are typically very close to the valence bands and thus do not allow the effective use of visible light. However, the measurements show that this also depends on the structure of the nanomaterials.

Outlook: Morphology and doping with P or N

"We can introduce and possibly control such additional steps in the diamond bandgap by specifically modifying the morphology and doping," says Tristan Petit. Doping with phosphorus or nitrogen could also offer new opportunities.

Published in Journal of Materials Chemistry A (2018):Combining nanostructuration with boron doping to alter sub band gap acceptor states in diamond materials; Sneha Choudhury, Benjamin Kiendl, Jian Ren, Fang Gao, Peter Knittel, Christoph Nebel, Amélie Venerosy, Hugues Girard, Jean-Charles Arnault, Anke Krueger, Karin Larsson & Tristan Petit

DOI: 10.1039/c8ta05594g

EU-Project DIACAT:



You might also be interested in
  • <p>The idea: during summer, a module with photovoltaic and catalytic materials is splitting molten ice into hydrogen (H<sub>2</sub>) and oxygen. The H<sub>2</sub> is stored.</p>NEWS      22.05.2019

    Energy for Antarctica: solar hydrogen as an alternative to crude oil?

    Volkswagen Foundation funds feasibility study by HZB experts in artificial photosynthesis

    The sun shines at the South Pole as well – and in summer almost around the clock. Instead of supplying research stations in the Antarctic with crude oil for producing the electricity and heating they need, solar hydrogen could be produced from sunlight in summer as an alternative. Hydrogen has a high energy density, is easy to store, and can be used as fuel when needed later without polluting the environment. An intriguingly simple idea - but one that raises many questions. Matthias May (HZB) and Kira Rehfeld (Heidelberg University) now want to examine how feasible this kind of solar fuel generation might be in Antarctica. The project is receiving financial support from the Volkswagen Foundation. [...]

  • <p>Bassi presented results on new phases in the quaternary Fe-Ti-W-O system for application as photoelectrocatalyst in light-assisted water splitting.</p>NEWS      20.05.2019

    Posterprize for HZB postdoc Prince Saurabh Bassi

    Dr. Prince Saurabh Bassi was awarded the poster prize at “International Bunsen-Discussion-Meeting on Fundamentals and Applications of (Photo) Electrolysis for Efficient Energy Storage”. He is a postdoctoral fellow working with Prof. Sebastian Fiechter in the Institute for Solar Fuels. [...]

  • <p>HZB-Teams are exploring and developing new technologies for perovskite based solar cells in the innovation lab HySPRINT.</p>NEWS      16.05.2019

    LAUNCH OF EPKI: European Perovskite Initiative for the development of Perovskite based solar technology

    Perovskite based solar cells have made tremendous progress over the last decade achieving lab-scale efficiencies of 24.2% early 2019 in single-junction architecture and up to 28% in tandem (perovskite associated with crystalline silicon), turning it into the fastest-advancing solar technology to date. With the HySPRINT project and the recruitment of highly talented young scientists, Helmholtz-Zentrum Berlin has built up a considerable research capacity in the field of perovskite materials in recent years and is participating in the European Perovskite Initiative EPKI that has now been launched. [...]