ERC Synergy grant with HZB participation

Computer scientist Andreas Maier, materials researcher Silke Christiansen and medical expert Georg Schett have been awarded with an ERC Synergy Grant.

Computer scientist Andreas Maier, materials researcher Silke Christiansen and medical expert Georg Schett have been awarded with an ERC Synergy Grant. © FAU

Novel X-ray microscope to produce microstructural images in situ and in vivo

An interdisciplinary team of scientists will develop a new imaging method to investigate osteoporosis and other bone diseases in living subjects. Prof. Silke Christiansen, a scientist at HZB and physics professor at Freie Universität Berlin, will contribute her expertise in correlative microscopy and nanotechnology. The 4-D+ nanoSCOPE project has now been selected by the European Research Council for an ERC Synergy Grant and will be funded for 72 months by up to 12.3 million euros.

The number of elderly and very old people is increasing world-wide, and therefore also the number of patients suffering from osteoporosis. This disease considerably impairs quality of life and results in high social expenditures. Nevertheless, the origin and course of osteoporosis are still not sufficiently understood. This is because methods for in-depth analysis of the evolution over time of the bone microstructure on living individuals are not yet available, especially methods that would also allow larger matrix studies having statistical significance. Now an interdisciplinary research team hopes to change this situation.

Professors Georg Schett (Universitätsklinikum Erlangen university hospital), Andreas Maier (Friedrich-Alexander-Universität Erlangen-Nürnberg FAU) and Silke Christiansen (Helmholtz-Zentrum Berlin für Materialien und Energie HZB and Freie Universität Berlin) plan to make X-ray microscopy of living organisms feasible for the first time. They plan to develop a unique fast-scanning, low-dose X-ray microscope, named the "4D+ nanoSCOPE", by modifying the hardware and software of an XRM Versa 520 in close cooperation with Carl Zeiss Microscopy. In particular, this will involve integration of a novel high-performance X-ray source and an ultra-fast read-out detector. Data evaluation will also benefit from application of the latest machine learning methods, referred to as Precision Learning.

For the first time, the 4-D nanoscope will make it possible to monitor the micro- and nanostructure of bones in living individuals over time and thus understand the process of bone remodelling. This makes it possible to assess the effects of aging, hormone state, inflammatory processes, medications, and other approaches for treatment of the bone.

“We congratulate Silke Christiansen and her colleagues on this very prestigious and truly synergistic grant. The new microscope will initially be used in medical research, but we look forward to applying its unique capabilities in energy research as well”, says Prof. Bernd Rech, Scientific Director of the HZB. The method also makes in situ studies of dynamic processes in natural and synthetic materials feasible, for example the observation and recording of corrosion processes and microfracturing.

The HZB has considerable expertise in the field of X-ray studies and electron microscopy, and has set up a modern joint equipment facility (CoreLabs) that is primarily used for research on thin-film solar cells, solar fuels, and other energy materials. The HZB CoreLabs and the HZB state-of-the-art Zeiss Labs@Location X-ray microscopes complement the BESSY II synchrotron at HZB.

 

Project name: 4-D+ nanoSCOPE – Advancing osteoporosis medicine by observing bone microstructure and remodelling using a four-dimensional nanoscope.

red.


You might also be interested in

  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.