Themen: BESSY II (264) Materialforschung (64) HZB-Eigenforschung (92)

Science Highlight    20.02.2019

Wasser ist homogener als gedacht

Mit Röntgenlicht (blau) werden Wassermoleküle angeregt. Aus dem abgestrahlten Licht (lila) lassen sich Informationen über Wasserstoffbrücken gewinnen.
Copyright: T. Splettstoesser/HZB

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1%  Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich aus, wenn es gefriert und zeigt weitere Anomalien, wenn sich Temperatur oder Druck verändern. Das sogenannte Phasendiagramm von Wasser ist relativ komplex. Wilhelm Conrad Röntgen hatte Ende des 19.ten Jahrhunderts eine Erklärung dafür vorgeschlagen: Flüssiges Wasser könnte aus einer Mischung von zwei unterschiedlichen Phasen bestehen, in einer befänden sich die Wassermoleküle in einem geordneten Zustand so wie im Eis, in der anderen Phase dagegen wären die Wassermoleküle völlig ungebunden wie in einem Gas. Röntgen selbst hatte Zweifel an diesem „Mischungsmodell“. Denn es ist deutlich komplizierter als das „Kontinuumsmodell“, das davon ausgeht, dass sich in flüssigem Zustand die Wassermoleküle über Wasserstoffbrückenbindungen lose und ungeordnet vernetzen. Doch tatsächlich schienen in den letzten Jahren neue Röntgenstudien eher das Mischungsmodell zu stützen.

Messungen an drei Lichtquellen

Nun hat ein internationales Team um Prof. Alexander Föhlisch (HZB und Universität Potsdam) an der Synchrotronlichtquelle BESSY II sowie an der European Synchrotron Radiation Facility ESRF und der Swiss Light Source Wasserproben mit modernsten röntgenspektroskopischen Methoden untersucht. Die Messdaten zeigen, dass bei Umgebungsbedingungen Wassermoleküle über Wasserstoffbrückenbindungen mit ihren nächsten Nachbarn nahezu tetahedral koordiniert sind. Pro Molekül gibt es jeweils 1,74 ± 2,1% Akzeptor- und  Donator-H-Bindungen, also insgesamt fast vier Bindungen, was eine tetrahedrale Koordination ermöglicht.

Kontinuumsmodell passt

Darüber hinaus konnten die Wissenschaftler aus den Daten auch ermitteln, wie sich Wassermoleküle mit ihren übernächsten Nachbarn koordinieren. Die Röntgenspektren spiegeln auch die unterschiedliche Dynamik von verschiedenen Anregungsprozessen, so findet die kurzzeitige Bildung oder Lösung von Wasserstoffbrücken tausendmal schneller statt als eine Anregung der Wassermoleküle selbst. Die Ergebnisse zeigen, dass das Kontinuumsmodell Wasser bei Umgebungsbedingungen angemessen beschreibt.

Die Studie geht auf weitere offene Fragen im Phasendiagramm von Wasser ein, insbesondere zur möglichen Existenz eines zweiten kritischen Punktes im sogenannten "Niemandsland" des unterkühlten Wassers.


Die Studie wurde in den Proceedings der National Academy of Science, PNAS 2019, veröffentlicht: Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions. Johannes Niskanen, Mattis Fondell, Sebastian Eckert, Raphael M. Jay, Annette Pietzsch, Vinicius Vaz da Cruz, Alexander Föhlisch

 DOI:10.1073/pnas.1815701116

 

 

 

 

 

 

arö


           



Das könnte Sie auch interessieren
  • <p>Dr. Godehard W&uuml;stefeld erhielt den Horst-Klein-Forschungspreis.</p>NACHRICHT      25.03.2019

    Godehard Wüstefeld erhält den Horst-Klein-Forschungspreis

    Der Physiker Dr. Godehard Wüstefeld wurde auf der Jahrestagung der Deutschen Physikalischen Gesellschaft mit dem Horst-Klein-Forschungspreis ausgezeichnet. Der Preis würdigt seine herausragenden wissenschaftlichen Leistungen in der Beschleunigerphysik bei der Entwicklung von BESSY II und BESSY VSR. [...]


  • <p>Skizze einer Kohlenstoffstruktur mit Poren.</p>SCIENCE HIGHLIGHT      13.03.2019

    Röntgenanalyse von Kohlenstoff-Nanostrukturen hilft beim Materialdesign

    Nanostrukturen aus Kohlenstoff sind äußerst vielseitig: Sie können in Batterien und Superkondensatoren Ionen aufnehmen, Gase speichern oder Wasser entsalzen. Wie gut sie diese Aufgaben meistern, hängt von Größe und Form der Nanoporen ab. Über die Temperatur während der Synthese lassen sich die Nanoporen dabei stark verändern.  Bisher war es nur möglich, Form, Größe sowie die Verteilung der Nanoporen ungefähr abzuschätzen. Eine neue Studie zeigt nun, dass sich solche Informationen direkt und zuverlässig mit Hilfe der Kleinwinkel-Röntgenstreuung gewinnen lassen. Die Ergebnisse wurden in der Zeitschrift Carbon veröffentlicht. [...]


  • <p>&Uuml;ber 250 geladene G&auml;ste feierten am 18. Februar im TIPI am Kanzleramt das zehnj&auml;hrige Jubil&auml;um des HZB.</p>NACHRICHT      18.02.2019

    10 Jahre Helmholtz-Zentrum Berlin: Ein starker Partner in der Wissenschaftslandschaft

    Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) feiert am 18. Februar 2019 mit rund 250 geladenen Gästen aus Wissenschaft, Politik und Wirtschaft sein zehnjähriges Bestehen. Das Zentrum zählt zu den Top-Institutionen weltweit und leistet einen entscheidenden Beitrag für Berlin als Standort der Spitzenforschung. Dies betont Michael Müller, Regierender Bürgermeister von Berlin, anlässlich des Jubiläums. [...]




Newsletter