Keywords: energy (312) career (60) solar energy (246) solar fuels (77) personnel (242)

News    01.03.2019

Marcel Risch to form research group at the HZB with an ERC Starting Grant

Dr. Marcel Risch has been awarded with an ERC Starting Grant and will continue his research at HZB.

Marcel Risch's research group at Georg August Universität, Göttingen, Germany.
Copyright: M.Risch

The Helmholtz-Zentrum Berlin (HZB) will be further strengthened in its research on solar fuels. Dr. Marcel Risch, who recently obtained an ERC Starting Grants, is moving from Georg August Universität, Göttingen to the HZB. Starting in March 2019, the materials physicist will set up his own research group to analyse and improve catalytic materials for water splitting.

Marcel Risch already knows the Helmholtz-Zentrum Berlin as a user, and now he will come permanently. The opportunity to combine materials synthesis, electrochemistry, and X-ray spectroscopy offered at the Energy Materials In Situ Laboratory (EMIL) at the BESSY II synchrotron source for example, are particularly attractive for him. Risch is researching catalytically active materials for splitting water into hydrogen and oxygen. This makes it feasible to produce hydrogen, which is a climate-neutral alternative to fossil fuels.

Risch received his doctorate from Freie Universität Berlin in 2011. The physicist then spent four years as a postdoctoral fellow at the Massachusetts Institute of Technology (MIT) in Cambridge, USA. Since 2016 he has been conducting research at the Institut für Materialphysik at Georg August Universität in Göttingen, Germany, most recently as head of a Young Investigator Group.

His research project for which he recently received the ERC Starting Grant from the European Research Council deals with the mechanism of oxygen development during the catalytic decomposition of water. The project is entitled “ME4OER - Mechanism Engineering of the Oxygen Evolution Reaction” and is funded by the ERC Starting Grant of 1.5 million euros for five years.

Risch and his team will study selected synthetic materials with specific crystal structures (spinel or perovskite-type). He is concentrating on the class of transition metal oxides that are very inexpensive but exhibit low efficiency in the oxygen evolution reaction (OER) which limits the production of hydrogen. Risch wants to increase the efficiency of such catalysts by several orders of magnitude through detailed knowledge of the reaction processes. To do this, the catalytic reactions on the surfaces must be analysed in detail. At EMIL he can fabricate these surfaces and analyse them in situ or in operando using X-ray spectroscopic methods.

arö


           



You might also be interested in
  • <p>The idea: during summer, a module with photovoltaic and catalytic materials is splitting molten ice into hydrogen (H<sub>2</sub>) and oxygen. The H<sub>2</sub> is stored.</p>NEWS      22.05.2019

    Energy for Antarctica: solar hydrogen as an alternative to crude oil?

    Volkswagen Foundation funds feasibility study by HZB experts in artificial photosynthesis

    The sun shines at the South Pole as well – and in summer almost around the clock. Instead of supplying research stations in the Antarctic with crude oil for producing the electricity and heating they need, solar hydrogen could be produced from sunlight in summer as an alternative. Hydrogen has a high energy density, is easy to store, and can be used as fuel when needed later without polluting the environment. An intriguingly simple idea - but one that raises many questions. Matthias May (HZB) and Kira Rehfeld (Heidelberg University) now want to examine how feasible this kind of solar fuel generation might be in Antarctica. The project is receiving financial support from the Volkswagen Foundation. [...]


  • <p>Bassi presented results on new phases in the quaternary Fe-Ti-W-O system for application as photoelectrocatalyst in light-assisted water splitting.</p>NEWS      20.05.2019

    Posterprize for HZB postdoc Prince Saurabh Bassi

    Dr. Prince Saurabh Bassi was awarded the poster prize at “International Bunsen-Discussion-Meeting on Fundamentals and Applications of (Photo) Electrolysis for Efficient Energy Storage”. He is a postdoctoral fellow working with Prof. Sebastian Fiechter in the Institute for Solar Fuels. [...]


  • <p>HZB-Teams are exploring and developing new technologies for perovskite based solar cells in the innovation lab HySPRINT.</p>NEWS      16.05.2019

    LAUNCH OF EPKI: European Perovskite Initiative for the development of Perovskite based solar technology

    Perovskite based solar cells have made tremendous progress over the last decade achieving lab-scale efficiencies of 24.2% early 2019 in single-junction architecture and up to 28% in tandem (perovskite associated with crystalline silicon), turning it into the fastest-advancing solar technology to date. With the HySPRINT project and the recruitment of highly talented young scientists, Helmholtz-Zentrum Berlin has built up a considerable research capacity in the field of perovskite materials in recent years and is participating in the European Perovskite Initiative EPKI that has now been launched. [...]




Newsletter