HZB contributions to special edition on Ultrafast Dynamics with X-ray Methods

At the end of his contribution, Phillippe Wernet makes a great arch from the past (Opticae Thesaurus, 1572) of research with light to the future.

At the end of his contribution, Phillippe Wernet makes a great arch from the past (Opticae Thesaurus, 1572) of research with light to the future. © Wikimedia cc

In this theme issue leading researchers discuss<br />recent work on the ultrafast electronic and structural<br />dynamics of matter using a new generation of short<br />duration X-ray photon sources.

In this theme issue leading researchers discuss
recent work on the ultrafast electronic and structural
dynamics of matter using a new generation of short
duration X-ray photon sources. © Royal Society

In the new special issue of the "Philosophical Transactions of the Royal Society of London", internationally renowned experts report on new developments in X-ray sources and ultrafast time-resolved experiments. HZB physicists have also been invited to contribute.

Almost 350 years after Isaac Newton's ground-breaking paper "Theory of Light and Colors (1671)", the world's oldest scientific journal “Philosophical Transactions” is now once again dedicated to light. The special issue on “Ultrafast Dynamics with X-ray Methods” is aimed at researchers who want to investigate biological, chemical or physical processes and obtain an overview of new developments in light sources and the methods available there. Dynamic processes in materials can be analyzed with high resolution and short pulses at X-ray light sources using ultrafast methods.

Femtoslicing and BESSY VSR

The special issue provides a comprehensive overview of current advances in the generation of ultra-short X-ray pulses by light sources such as Free Electron Lasers (FELs), High Harmonic Generation (HHG) laser sources and synchrotron radiation sources. An article in collaboration with Dr. Karsten Holldack, HZB, presents FEls and Laser sources but also classifies storage ring based methods such as “Femtoslicing”  and BESSY VSR. These methods combine highly brilliant synchrotron light with a special time structure and thus allow to address unique experimental questions that cannot be answered at other sources. This complements and expands the portfolio of accelerator-based sources.

Ultra fast spectroscopy for photochemistry

An important contribution is dedicated to photochemistry, an area that focuses on processes such as photosynthesis, the dynamics of which are still largely unexplored. Using ultra-fast spectroscopy at FELs, HHG sources or at the synchrotron with BESSY VSR, methods are now available to measure in detail, for example, excitations of metallo-proteins and the subsequent reactions ; such experiments provide data that are indispensable, for example, for understanding photocatalysis of solar fuels. This article was written by Prof. Dr. Philippe Wernet, formerly a senior scientist at the HZB, and now a professor at Uppsala University, Sweden.

To the publications:

Measurement of ultrafast electronic and structural dynamics with X-rays; J. P. Marangos (ed.)

doi: 10.1098/rsta/377/2145

Recent Advances in Ultrafast X-ray Sources; Robert Schoenlein, Thomas Elsaesser, Karsten Holldack, Zhirong Huang, Henry Kapteyn, Margaret Murnane, Michael Woerner

doi: 10.1098/rsta.2018.0384

Chemical interactions and dynamics with femtosecond X-ray spectroscopy and the role of X-ray free-electron lasers; Philippe Wernet

doi: 10.1098/rsta.2017.0464

arö


You might also be interested in

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.